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ABSTRACT 

FACILITATING AND ENHANCING BIOMEDICAL KNOWLEDGE 

TRANSLATION: AN IN SILICO APPROACH TO PATIENT-CENTERED  

PHARMACOGENOMIC OUTCOMES RESEARCH 

 

by 

 

Kourosh Ravvaz 

 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Peter J Tonellato 

 

 

Current research paradigms such as traditional randomized control trials 

mostly rely on relatively narrow efficacy data which results in high internal 

validity and low external validity. Given this fact and the need to address 

many complex real-world healthcare questions in short periods of time, 

alternative research designs and approaches should be considered in 

translational research. In silico modeling studies, along with longitudinal 

observational studies, are considered as appropriate feasible means to 

address the slow pace of translational research. Taking into consideration this 

fact, there is a need for an approach that tests newly discovered gene 

variants, via an in silico enhanced translational research model (iS-TR) to 

conduct patient-centered outcomes research and comparative effectiveness 

research studies (PCOR CER). 

In this dissertation, it was hypothesized that retrospective EMR analysis and 

subsequent mathematical modeling and simulation prediction could facilitate 

and accelerate the process of generating and translating pharmacogenomic 

knowledge on comparative effectiveness of anticoagulation treatment plan(s) 

tailored to well defined target populations which eventually results in a 

decrease in overall adverse risk and improve individual and population 
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outcomes. To test this hypothesis, a simulation modeling framework (iS-TR) 

was proposed which takes advantage of the value of longitudinal electronic 

medical records (EMRs) to provide an effective approach to translate 

pharmacogenomic anticoagulation knowledge and conduct PCOR CER 

studies. 

The accuracy of the model was demonstrated by reproducing the outcomes of 

two major randomized clinical trials for individualizing warfarin dosing. A 

substantial, hospital healthcare use case that demonstrates the value of iS-TR 

when addressing real world anticoagulation PCOR CER challenges was also 

presented. 
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1.1.) Statement of the Problem 

Translational research in genomics aims to move promising genomic 

applications to clinical and public health practice for population health benefit 

(Cleeren, 2011). Despite demonstrable health benefits of many new genomic 

discoveries, there remain large barriers between the explosive growth of 

healthcare related scientific discovery and dramatic improvements in 

technology and the implementation of this new knowledge and technology to 

improve health outcomes. There is great optimism that systematic 

translational research will address these gaps and remove these barriers 

while appropriately evolving patient-centered care practice to improve the 

health of individuals and populations (Glasgow, 2012; Waldman, 2010).   

A fifteen year study to evaluate predictors of and time required for the 

translation of highly promising basic research into clinical applications, 

showed that only about 5% of the basic science findings were licensed for 

clinical use and only 1% were extensively used for licensed indications 

(Contopoulos-Ioannidis, 2003). 

Since the completion of the Human Genome Project in 2003 (Collins, 2003), 

advances in genetic science discoveries have led to mounting expectations in 

regard to their impact on health care and disease prevention. Translating 

genetic discoveries into lab tests, improved individual care and ultimately into 

public health improvements, has emerged as an important, but difficult, 

objective in biomedical research. It is widely recognized that the current 

translational process is slow, very expensive and often results in an 

incomplete transfer of research findings into practice, and consequently failure 

of comparative effectiveness studies used to translate the findings into 
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substantial changes in patient care and health disparities (Khoury, 2007). 

Although pharmacogenomics is one of the first clinical applications of the new 

genomic era, so far, few human genomic discoveries have led to evidence-

based applications for medicine and public health and its implementation in 

clinical practice still involves significant challenges (Swen, 2007; Burke, 

2006). 

The delay in systematic use of the rapidly expanding collection of clinically 

valuable genomic discoveries is created by significant problems in the clinical 

research enterprise including the lack of clinical and biomedical informatic 

methods, tools and infrastructure required to facilitate the successful 

translation of the discoveries to practical clinical use. To date, the primary 

focus of initiatives is to improve the technology, clinical science collaboration 

and training, and methodologies supporting rapid discovery and regulatory 

approval of genetic, genomic, and biological markers, associations, and 

targets. However, efforts to translate discoveries and processes to generate 

and evaluate evidence in genomic areas (e.g., pharmacogenomics) require 

prohibitively expensive clinical trial and clinical study validation that are 

severely hindered by regulatory, technical and validation barriers not easily 

conducted using current clinical-research or clinical enterprise environments.  

As an example of these conundrum, highly-sensitive pharmacogenomic (PGx) 

tests that detect variant alleles combined with increasing genomic knowledge 

offer physicians the ability to individualize a patient’s drug treatment. If 

pharmacogenomic treatment is successful, one anticipates a large reduction 

in adverse drug reactions leading to improved patient care, improved 

outcomes, reduced treatment periods, and overall lower costs. 
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One notable case is the estimation of initial and managing the maintenance 

dose of warfarin, the most commonly prescribed oral anticoagulant for the 

treatment and prevention of thromboembolic events. Many studies have 

proven warfarin’s effectiveness for the prevention of recurrent stroke, 

ischemic stroke in patients with atrial fibrillation, thromboembolism in patients 

with mechanical prosthetic heart valves, and myocardial infarction in patients 

with coronary artery disease (Reynolds, 2007). Warfarin is also effective for 

the prevention of pulmonary embolism (PE) and deep venous 

thromboembolism (DVT) in patients requiring orthopedic surgery and in those 

with a history significant for venous or arterial thromboembolism. Although 

warfarin remains the therapy of choice, its narrow therapeutic index creates 

challenges for proper management of anticoagulation, as maintaining the 

balance of sufficient dosage to prevent thromboembolism while avoiding 

overdosing to prevent bleeding events is critical. The correct initial dose of 

warfarin differs widely between individuals with intra-individual variability 

contributions from factors including age, gender, race, body size, drug 

interactions, genetics (i.e., mainly VKORC1 and CYP2C9 genes) and 

compliance. The challenge of warfarin dosing and promise of 

pharmacogenomics (PGx) have resulted in tens of dosing algorithms including 

a large number of PGx-based warfarin dosing algorithms. 

To date, PGx-based dosing algorithms have not been adequately tested for 

their impact on clinical outcomes across large hospital diverse patient 

populations in prospective, controlled trials as it is extremely expensive and 

time-consuming to conduct the full array of clinical trials required to test and 



www.manaraa.com

5 

 

 

 

identify the correct combination of genotypes, phenotypes, clinical and 

personal data necessary to accurately model drug response, test treatment 

options and produce the optimal protocol. For example, in most clinical trials 

the study population is dominated by a specific racial or sub-population group 

(e.g., about 95% of CoumaGen-I & II study populations were white) which 

leads to questions on the effectiveness of the PGx testing for different sub-

populations and also failure of comparative effectiveness studies and health 

disparities. Accordingly, there is insufficient evidence, at this time, to 

recommend for or against routine CYP2C9 and VKORC1 testing in patients 

under warfarin. Consequently, the use of PGx testing in clinical practices has 

remained limited. In short, the translation of pharmacogenomic knowledge to 

clinical practices is associated with challenges and no practical approach to 

identify the optimal anticoagulation treatment plan exists for large 

heterogeneous patient populations that accounts for individual risk factors, 

drug and protocol options, and achieves minimal risk to adverse reactions.  

1.2.) Translational Research, Patient-Centered Outcomes 

Research and Comparative Effectiveness 

As mentioned, translational research is designed to move knowledge gained 

from the basic sciences to its application into clinical and community settings 

thus improving healthcare outcomes. This process is usually described in 

phases of translation (i.e., "T-phases"). Recognizing that there are a number 

of ways to frame the phases, a 5-phase model of translational research 

process proceeds in iterative and bidirectional phases, research to identify a 

problem and the discovery of an opportunity or approach to tackle a health 

issue (T0), research involves basic genome-based discoveries to develop 
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promising applications such as tests and drugs (T1), research involves 

evaluating efficacy of such applications and developing evidence-based 

recommendations (T2), research includes investigations designed to increase 

uptake and implementation of evidence-based recommendations into practice 

and public health programs (T3), and research involves evaluation of the 

effectiveness and cost-effectiveness of genomic applications in the "real 

world" and in diverse populations (T4) (Khoury, 2012). The translation process 

is guided by ongoing and updated knowledge synthesis and translation that 

applies to all phases of translation (Khoury, 2010). 

Focusing on these phases, each of which addresses different issues and 

requires somewhat different methods, provides greater clarity about what is 

needed if evidence-based approaches are to be successfully implemented 

and sustained in real-world settings. One of the main methods used in almost 

all phases from T2 through T4 is conducting clinical trials. Given the 

complexity and cost of clinical trials, most funded and published genomic 

research remains in the early phases of translation (Schully, 2012). 

Consequently, the evidence base for genomics in practice remains limited.  

In the light of existing challenges in translating pharmacogenetic knowledge of 

anticoagulants and given the burden of managing anticoagulation therapy 

using medications with high and variable adverse event risks across diverse 

populations, there is a clear need for prospective clinical trials that provide 

direct evidence of the benefits, disadvantages, and costs associated with the 

genetic testing in the setting of warfarin dosing as well as patient-centered 

outcomes research and comparative effectiveness studies (PCOR CER). 

PCOR CER studies are to assist patients, clinicians, and other stakeholders in 
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making informed decisions by advancing the quality and relevance of 

evidence concerning the manner in which anticoagulation therapy can 

effectively and appropriately be managed through research and evidence 

synthesis that considers variations in patient subpopulations and the 

dissemination of research findings with respect to the relative health 

outcomes, clinical effectiveness, and appropriateness of the medical 

treatments.  

Comparative effectiveness research (CER), as a main practical approach to 

the PCOR, is defined by the Institute of Medicine as "the generation and 

synthesis of evidence that compares the benefits and harms of alternative 

methods to prevent, diagnose, treat, and monitor a clinical condition or to 

improve the delivery of care” (IOM, 2009). In the context of anticoagulation 

therapy, PCOR CER studies could address questions such as: "Given my 

personal characteristics, conditions and preferences, what should I expect 

from different anticoagulation therapy protocols?", "What are my 

anticoagulation therapy options and what are the potential benefits and harms 

of those options?", "What can I do to improve the outcomes of my 

anticoagulation therapy given my health condition?", and "How can clinicians 

and the care delivery systems they work in help me make the best decisions 

about my anticoagulation-related health?" (PCORI, 2014). 

1.3.) An In Silico Translational Research Model for 

Patient-Centered Outcomes Research and Comparative 

Effectiveness Studies 

Current research paradigms such as traditional randomized control trials 
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mostly rely on relatively narrow efficacy data which results in high internal 

validity (i.e., extent to which systematic error, bias, is minimized in clinical 

trials under optimal conditions) and low external validity (i.e., extent to which 

results of trials provide a correct basis for generalization to other 

circumstances) (Glasgow, 2012; Nelson, 2006; Juni, 2001; Kessler, 2011). 

Given this fact and the need to address many complex real-world healthcare 

questions in short periods of time, alternative research designs and 

approaches should be considered in translational research. In silico modeling 

studies, along with longitudinal observational studies, are considered as 

appropriate feasible means to address the slow pace of translational research 

(Glasgow, 2012). Taking into consideration this fact, there is a need for an 

approach that tests newly discovered genetic variants, via an in silico 

enhanced translational research model (iS-TR) to conduct patient-centered 

outcomes research and comparative effectiveness studies (Figure 1.1). 
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1.4.) Objective of this work: 

In this dissertation, we hypothesize that retrospective EMR analysis and 

subsequent mathematical modeling and simulation prediction can facilitate 

and accelerate the process of generating and translating pharmacogenomic 

knowledge on comparative effectiveness of anticoagulation treatment plan(s) 

tailored to well defined target populations which eventually results in a 

decrease in overall adverse risk and improve individual and population 

outcomes. To test this hypothesis, we present a simulation modeling 

framework, in silico enhanced model of translational research (iS-TR), which 

takes advantage of the value of longitudinal electronic medical records 

(EMRs) to provide an effective approach to translate pharmacogenomic 

anticoagulation knowledge and conduct PCOR CER studies. 

We, first, introduce “iS-TR”, a translational research model enhanced with in 

silico knowledge synthesis that expedites testing newly discovered genetic 

variants and eventually facilitates conducting PCOR CER studies (Figure 1.1). 

Second, we demonstrate the accuracy of the framework by reproducing the 

Figure 1.1. Conceptual framework of iS-TR: an iterative and 
bidirectional translational research framework enhanced 

with an in Silico knowledge synthesis platform to facilitate 
pharmacogenetic PCOR and CER studies. 
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outcomes of two major randomized and clinical effectiveness trials of 

CoumaGen I and II comparing pharmacogenetic algorithms and standard care 

for individualizing warfarin dosing. Third, we present a substantial, hospital 

healthcare Use Case that demonstrates that the value of iS-TR when 

addressing real world anticoagulation PCOR CER challenges.  

1.5.) Organization of the Dissertation 

This dissertation consists of 7 chapters. An introductory chapter presents the 

statement of problem and the objectives. 

Chapter 2 presents a background on models of translational research, our in 

silico enhanced model of translational research (iS-TR), anticoagulation and 

anticlotting, pharmacogenetics, in silico clinical trial studies, and application of 

the iS-TR to a patient-centered pharmacogenetic outcomes research problem, 

Chapter 3 describes the details of our in silico translational model of genetics 

testing in patient-centered anticoagulation outcomes research, 

Chapter 4 focuses on the details of development of an EMR-based 

longitudinal comparative effectiveness anticoagulation/anticlotting research 

database, 

Chapter 5 describes a few in silico translational research pharmacogenetic 

comparative effectiveness studies using iS-TR, 

Chapter 6 presents a PCOR CER study conducted using iS-TR and WiAD to 

address warfarin therapy differences in different subpopulations, 

Chapter 7 contains a summary of the important results and conclusions and it 

also discusses directions for future work in this area using in siIico 

translational research. 

  



www.manaraa.com

11 

 

 

 

1.6.) References: 
Burke, W., Khoury, M. J., Stewart, A., & Zimmern, R. L. (2006). The path from 

genome-based research to population health: development of an international 

public health genomics network. Genetics in medicine : official journal of the 

American College of Medical Genetics, 8(7), 451-458. 

 

Cleeren, E., Van der Heyden, J., Brand, A., & Van Oyen, H. (2011). Public 

health in the genomic era: will Public Health Genomics contribute to major 

changes in the prevention of common diseases? Archives of public health = 

Archives belges de sante publique, 69(1), 8. 

 

Collins, F. S., Green, E. D., Guttmacher, A. E., & Guyer, M. S. (2003). A 

vision for the future of genomics research. Nature, 422(6934), 835-847. 

 

Contopoulos-Ioannidis, D. G., Ntzani, E., & Ioannidis, J. P. (2003). Translation 

of highly promising basic science research into clinical applications. The 

American journal of medicine, 114(6), 477-484. 

 

Glasgow, R. E., Nelson, C. C., Strycker, L. A., & King, D. K. (2006). Using RE-

AIM metrics to evaluate diabetes self-management support interventions. 

American journal of preventive medicine, 30(1), 67-73. 

 

Glasgow, R. E., Vinson, C., Chambers, D., Khoury, M. J., Kaplan, R. M., & 

Hunter, C. (2012). National Institutes of Health approaches to dissemination 

and implementation science: current and future directions. American journal of 

public health, 102(7), 1274-1281.  

 

Institute of Medicine (IOM). (2009). Initial National Priorities for Comparative 

Effectiveness Research: The National Academies Press. 

 

Juni, P., Altman, D. G., & Egger, M. (2001). Systematic reviews in health care: 

Assessing the quality of controlled clinical trials. BMJ, 323(7303), 42-46. 

 

Kessler, R., & Glasgow, R. E. (2011). A proposal to speed translation of 

healthcare research into practice: dramatic change is needed. American 

journal of preventive medicine, 40(6), 637-644. 

 

Khoury, M. J., Gwinn, M., Dotson, W. D., & Schully, S. D. (2012). Knowledge 

integration at the center of genomic medicine. Genetics in medicine : official 

journal of the American College of Medical Genetics, 14(7), 643-647. 

 

Khoury, M. J., Gwinn, M., & Ioannidis, J. P. (2010). The emergence of 

translational epidemiology: from scientific discovery to population health 



www.manaraa.com

12 

 

 

 

impact. American journal of epidemiology, 172(5), 517-524. 

 

Khoury, M. J., Gwinn, M., Yoon, P. W., Dowling, N., Moore, C. A., & Bradley, 

L. (2007). The continuum of translation research in genomic medicine: how 

can we accelerate the appropriate integration of human genome discoveries 

into health care and disease prevention?. Genetics in medicine, 9(10), 665-

674. 

 

PCORI. (2014). Patient-Centered Outcomes Research Institute. Retrieved 

April 20, 2014, from http://www.pcori.org/research-we-support/pcor/ 

 

Reynolds KK, V. R., Hartung BR, Linder MW. (2007). Individualizing warfarin 

therapy. Personalized Medicine, 4(1), 11-31. 

 

Schully, S. D., Benedicto, C. B., & Khoury, M. J. (2012). How can we 

stimulate translational research in cancer genomics beyond bench to 

bedside?. Genetics in medicine, 14(1), 169-170. 

 

Swen, J. J., Huizinga, T. W., Gelderblom, H., de Vries, E. G., Assendelft, W. 

J., Kirchheiner, J., et al. (2007). Translating pharmacogenomics: challenges 

on the road to the clinic. PLoS medicine, 4(8), e209. 

 

Waldman, S. A., & Terzic, A. (2010). Clinical and translational science: from 

bench-bedside to global village. Clinical and translational science, 3(5), 254-

257. 

  



www.manaraa.com

13 

 

 

 

Chapter 2: Background 

 

2.1.) Translational Research 

2.1.1.) Models of Translational Research 

2.2.) An In Silico Enhanced Model of Translational Research (iS-TR) 

2.3.) Anticoagulation and Anticlotting 

2.4.) Pharmacogenetics 

2.5.) In Silico Clinical Trial Studies 

2.6.) Application of the iS-TR to a Patient-Centered Pharmacogenetic 

Outcomes Research Problem 

2.7.) Focus of this study 

2.8.) References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

14 

 

 

 

2.1.) Translational Research 

The progression of scientific knowledge that advances discoveries from 

“bench to bedside” occurs through a process called translation. The term 

“translation” which defines and describes the advancement of knowledge 

through multiple successive phases of research transformation from basic 

scientific discoveries to public health impact is a complex process that 

involves different resources and actions and requires both research (e.g., 

bench-work and clinical trials) and nonresearch activities (e.g., 

implementation) (Drolet, 2011). The application of findings derived in basic 

science to the development of new understanding of disease mechanisms, 

diagnoses, and therapeutics in humans is known as “Translational Research” 

(Nathan, 2002). Despite an ongoing discussion on the number and nature and 

stages of translational research, the general consensus is that translational 

research involves highly iterative and interrelated stages of research in 

advancing from scientific discoveries to population health (Glasgow, 2012).  

In this section, we review the current models and terminology of translation 

and translation research. We consider the widely adopted models of 

translational research that have been proposed for different areas of medicine 

and public health and investigate its applicability to genomic medicine using 

some examples.  

Although the gap between bench and bedside and knowledge translation 

have been discussed in the last few decades, the translation process has 

been at the center of attention in biomedical science for only last few years. 

The Institute of Medicine (IOM) acknowledged the difficulty and importance of 

translating basic scientific discoveries to clinical applications in its 2001 
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“Crossing the Quality Chasm” report (Institute of Medicine, 2001). In 2003, the 

National Institutes of Health (NIH) Roadmap was announced in which 

translation research was a prominent component (Zerhouni, 2003). Through 

the Roadmap, many significant programs and major grant efforts have been 

funded by the NIH to expedite the process and translation. In spite of billions 

of dollars invested by the NIH to fund basic science research each year, the 

rate of translation of the results of these research studies into clinical practice 

has been low and slow. The results of a study on the translation of basic 

science shows that less than 25% of highly promising biomedical discoveries 

resulted in at least one published positive randomized clinical trial and less 

than 5% were established in clinical practice within 20 years (Contopoulos-

Ioannidis, 2003). Only 14% of new scientific discoveries entered day-to-day 

practice and the translation took an average of 17 years (Westfall, 2007). For 

instance, one study showed that 15 years after successful clinical trials on 

beta blockers for patients recovering from myocardial infarction, these 

medications were prescribed for only 62% of patients (Lenfant, 2003). The low 

percentage of translation, long translational time periods, and low practical 

implementation would likely be reduced and improved if a known process and 

clear model of translation of basic science into clinical practice existed and 

was used. It is vital to identify the continuum of knowledge translation from the 

laboratory to the point of care. Without having enough understanding of this 

process, knowledge gets lost in translation and it is difficult to improve the 

quality of translation and therefore to reach public health gains. 
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2.1.1.) Models of Translational Research 

The IOM Translational Research Model: 

In 2003, the US Institute of Medicine (IOM) put forth the principles and a 

model for translational research. Their translation model (“Clinical Research 

Continuum”, CRC) consists of a two-phase process: 

1- From basic science to clinical science and 

2- From clinical science to public health impact. 

The CRC model is based on different perceptions of basic science 

researchers and public health agencies on translational research. The first 

group believes that translational research involves "the transfer of new 

understandings of disease mechanisms gained in the laboratory into the 

development of new methods for diagnosis, therapy, and prevention and their 

first testing in humans" (Sung, 2003). The second group tends to view 

translational research as "the translation of results from clinical studies into 

everyday clinical practice and health decision making" (Sung, 2003). IOM 

refers to the first phase as "T1" translational research (translation of basic 

Figure 2.1. The 2 Translational Blocks in the Clinical Research Continuum 
(Sung, 2003). 
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research into clinical application) and the second phase as "T2" research 

(clinical application to evidence-based practice guidelines).  

They also identified “Translational Blocks” acting as obstacles in the clinical 

research continuum in their framework (Figure 2.1). 

“Blue Highways” on the NIH Roadmap: 

While the standard NIH Roadmap for Medical Research included two major 

laboratories (bench and bedside) and two above translational steps, Westfall 

et al., in 2007, divided the second phase into two separate phases resulting in 

a three-phase translational research model (Figure 2.2) (Westfall, 2007): 

1- Basic science to clinical science (T1) 

2- Clinical practice (T2) 

3- Health improvement (T3) 

The following figure displaying this model includes examples of the types of 

research common in each research laboratory and translational step. 

As illustrated in the above figure, the proposed expansion of the NIH 

Roadmap (blue) consists of (1) an additional research paradigm (Practice-

based Research) and (2) a translational step (T3) to improve dissemination 

Figure 2.2. Expansion on the NIH Roadmap (Westfall, 2007). 
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and implementation of research discoveries into clinical practice as the 

endpoint of the process. 

The 3T's Road Map: 

Taking into consideration the need for expediting the process of translating 

and implementing discoveries into clinical settings, a three-phase model of 

translational research has been offered by Dougherty et al., which addresses 

the "how" of health care delivery (Figure 2.3) (Dougherty, 2008). 

This model moves from basic biomedical science to clinical efficacy 

knowledge (T1). Then, T2 translation focusing on outcomes and comparative 

effectiveness research results in clinical effectiveness, and patient-centered 

knowledge and evidence which helps develop individualized treatment plans, 

more effective "practice guidelines and tools for patients, clinicians and policy 

makers". 

T3 translation activities focus on how new evidence-based treatment, and 

prevention plans and other interventions are rapidly and reliably incorporated 

into day-to-day clinical practice and aligned across all levels of the health care 

system. This phase of translation aimed to improve the health of individuals 

and populations is accomplished by conducting research in domains such as 

Figure 2.3. The 3T's Road Map - Double-headed arrows represent the 
essential need for feedback loops between and across the phases of the 

translational research process (Dougherty, 2008). 
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measurements, dissemination, and implementation of interventions and 

healthcare delivery. Policy change is a major component of T3 activities 

required to enhance health outcomes. In this model, the translational steps 

T1, T2, and T3 built on each other proceed to improve healthcare delivery 

over time. This model also includes feedback loops (as represented by the 

bidirectional arrows in Figure 2.3) to explicitly emphasize on the importance of 

the bidirectional nature of translational research process.  

Biomedical Research Translation Continuum: 

Since Drolet et al. believed that none of the prior translation models was 

unambiguous and the terminology remained indistinct to both researchers and 

physicians, they proposed a model to define and solidify the concepts and 

terminology of translation. They called their model “the Biomedical Research 

Translation Continuum” (Figure 2.4) (Drolet, 2011). 

This model has 4 practical landmarks separated by gaps called "Translation 

Chasms". These chasms represent periods in which translation activities are 

required to fill the gaps between the phases of research continuum. In the 

illustration of the model (Figure 2.4), the "zone of translation" depicts the 

collection of translational tasks that have to be conducted to reach public 

health impact. 

The underlying idea for this model is that a biomedical translation research 

continuum starts with basic science discoveries that are supposed to be 

translated to create potential clinical uses. The initial step involves the first 

translation chasm (T1) in which the basic science discoveries are interpreted 

in the context of human medical applications. In most cases, addressing T1 

chasm requires in vitro laboratory studies and animal models. This is 
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especially the case for genetic scientific discoveries. So, any new basic 

discovery entering the continuum is going to be interpreted and translated to 

human medical applications. The other translation chasms are also bridged 

similarly. For the T2 chasm, potential human applications are followed by 

studies such as clinical trials on animal models and humans. In this phase, 

the safety and efficacy of the interventions based on the new medical 

applications are evaluated. The output of this phase is proven clinical 

applications which are going to be implemented and adopted in clinical 

practice through bridging the T3 chasm. The ultimate goal is to make positive 

impacts on public health.  

To see a complete picture of the translation continuum, they have brought up 

two examples to examine the entire translation continuum retrospectively. 

First, it is the example of aspirin for a specific medical application as a 

medication administered after myocardial infarction (MI) to decrease morbidity 

and mortality. In this case, initially basic science knowledge from laboratory 

discoveries (i.e., "acetylsalicylic acid inhibits prostaglandin synthesis") has to 

be translated to proven clinical practice (administration of aspirin after MI), 

and, eventually, to individual and public health impacts (decreased mortality). 

In this process, initially, basic science knowledge has to be translated to a 

medicine. It happens by bridging the T1 chasm. To cross the first translational 

chasm (T1), the potential human applications of the medication aspirin should 

be identified ("Aspirin inhibits platelet aggregation in vivo via inhibition of 

prostaglandin synthesis") and also biochemical mechanisms that the 

medication functions in vivo has to be studied in laboratory investigations.  
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The next step which comes after development of a human application (e.g., 

"Aspirin prevents post-MI thrombosis by inhibiting platelet aggregation") is to 

test the safety and efficacy of the medication by conducting clinical research 

studies such as clinical trials. This translational study crosses the second 

chasm (T2).   

Once the effectiveness of aspirin in decreasing post-MI thrombosis and 

mortality is demonstrated through clinical trial studies, the medication could be 

implemented and adopted in clinical practice by bridging the third translational 

chasm (T3). Then, through practice-based research studies, the public health 

impact of aspirin should be investigated to find out if administering this 

medication after MI reduces the rate of morbidity and mortality in the 

population. In this translational model also, the process of translation is 

bidirectional and “bedside to bench” feedback loops are considered as means 

to allow integration of new knowledge and also continual improvement of 

translation process.   

The second example is about the administration of beta blockers after MI 

which is well depicted in the following table (Table 2.1). 

 

Figure 2.4. Biomedical Research Translation Continuum (Drolet, 2011) 
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Table 2.1. Research Translation Continuum for the administration of beta 

blockers after MI (Drolet, 2011). 

 

The Continuum of Translation Research in Genomic Medicine: 

In the current omics era, it is believed that recent improvements and 

advances in human genomics and related fields would lead in the future to (1) 

accelerating the use of new biomarkers derived from gene expression, 

proteomic, and other omic technologies, and (2) more genomic applications 

for personalized medicine and disease prevention. Although, there is currently 

a high interest in evaluating genetic variants for their association with common 

chronic diseases, however, the rate of use of genetic tests in clinical practice 

and clinical research has increased at a slow pace in last few years (Pagon 

2006). To expedite moving genomic discoveries into practice and the delivery 

of population-level health benefit, Khoury et al. have proposed a translational 

model that classifies genomic translational research into the four following 

multidisciplinary phases of translation (Khoury, 2007): 

1- from gene discovery to candidate health applications (T1), 
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2- from health applications to evidence-based guidelines (T2), 

3- from evidence-based guidelines to health practice (T3), 

4- from practice to population health impact (T4). 

Their phase 4 (one more phase to the Westfall’s model) represents the 

population-level evaluation of health outcomes (Figure 2.5). 

Although the four phase-array of translational research proposed by Khoury et 

al. seems to be a linear process, however, this process takes advantage of 

feedback loops and it is likely that similar types of research (e.g., clinical trials, 

observational studies) are conducted in different phases.  

They have also offered the detailed definitions of some terms used in 

translational research models (Table 2.2). 

 

Figure 2.5. The continuum of translation research in genomic 
medicine. HuGE, human genome epidemiology; ACCE, analytic 

validity, clinical validity, clinical utility, ethical, legal, and social issues. 
(Khoury, 2007) 
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Translational Research and Knowledge Integration: 

Glasgow et al., in 2012, argued that although there are “significant advances 

in treatments, the public health benefits associated with these improved 

Table 2.2. Glossary of certain types of “translation research” 
involving multiple scientific disciplines (Khoury, 2007). 
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treatments tend to be modest because they are not widely implemented” 

(Glasgow, 2012). Accordingly, they believe there should be more focus on 

some aspects of dissemination and implementation research (rigor and 

relevance, efficiency, collaboration, improved capacity, and cumulative 

knowledge) to be able to accelerate and improve the appropriate integration 

of basic science and genomic discoveries into health care and disease 

prevention. Consequently, this prohibits incomplete classification of translation 

which might result in missing influential and in essence different tasks that 

have to be addressed in the later stages of translation, “dissemination” and 

“implementation”.  

To address this need, they have proposed a different translational research 

model with a more differentiated approach to the science of dissemination and 

implementation (Figure 2.6). Rather than a linear process of translating 

research findings into practice, they have framed the phases of translational 

research as a 5-phase model in which research moves into practice and 

policy. Having known that research in essence is not a one-way process, they 

also believe findings at any phase can impact the other phases and the 

translational process is a highly iterative cycle. These 5 overlapping, 

interrelated phases span a diverse array of research disciplines, methods and 

activities needed to move basic science discoveries to population health. 

Each phase moves to progressively broader settings over time and addresses 

different questions and requires somewhat different methods to successfully 

implement and sustain evidence-based approaches in real-world settings. 

Basically, this 5-phase model shows the complexity of translational research 



www.manaraa.com

26 

 

 

 

and its inter- and transdisciplinary nature which requires collaboration among 

partners from basic, clinical, population sciences as well as communities.    

In the T0 phase, unaddressed health issues and opportunities and the 

potential scientific approaches to tackle them are identified. Basically, the 

scientific approaches and discoveries could be derived from multiple 

disciplines such as molecular, biological, genomic, behavioral, and 

epidemiological research studies. Then, it is followed by the T1 phase in 

which promising interventions (e.g., clinical tests, drugs, behavioral, and 

organizational interventions or policy changes) are tested. In the next phase 

(T2), the focus is on finding the effectiveness of the new developed 

interventions and whether they positively impact health outcomes. Different 

study designs (e.g., clinical trials) and analysis methods are used during this 

second research phase to create evidence-based recommendations, policies, 

and guidelines published by respective professional associations and groups. 

As mentioned in the earlier sections, NIH's primary focus has been on T1 and 

T2 research and it usually categorizes the activities during T3 and T4 

translational research phases under T2. In this model, the T3 phase includes 

research studies designed and conducted to scale up the implementation of 

evidence-based recommendations and guidelines into clinical practice 

settings. And finally, the T4 phase involves real-world evaluation of the 

population health outcomes of the interventions through different translational 

studies such as comparative effectiveness and cost effectiveness research 

studies. Glasgow et al. mainly focus on dissemination and implementation 

and highly believe in the importance of investigation and understanding of the 

processes involved in the adoption, implementation, and sustainability of 
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research. According to them, these translational processes and activities 

include “dissemination of interventions”, “decisions by healthcare practitioners 

or organizations to adopt or use the interventions”, “implementation of the 

interventions into standard practice or standard operating procedures of 

organizations”, and “maintenance of changes in health care practices by 

organizations, individual health care practitioners, and patients”. In their 

proposed cyclic model, the translational research process is fueled and 

directed by continuing and updated evidence and knowledge synthesis to 

guide dissemination and implementation research.    

2.2.) An In Silico Enhanced Model of Translational 

Research (iS-TR) 

Given the limitations of the other translational research models and the need 

to address many complex real-world healthcare questions in short period of 

Figure 2.6. 5-phase model of translational research guided by ongoing and 
updated knowledge synthesis and integration (Glasgow, 2012). 
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time, alternative research designs, approaches and models should be 

considered in translational research. In silico modeling studies, along with 

longitudinal observational studies, are considered as appropriate feasible 

means to address the slow pace of translational research (Glasgow, 2012). 

Taking into consideration this fact in the context of genomics and specifically 

pharmacogenomics, there is a need for an approach that tests newly 

discovered genetic variants, via an in silico enhanced translational research 

model (iS-TR) to conduct patient-centered outcomes research and 

comparative effectiveness studies (PCOR CER). Figure 2.7 depicts the 

conceptual framework of our proposed iS-TR which includes an iterative and 

bidirectional translational research framework enhanced with an in silico 

knowledge synthesis platform to facilitate pharmacogenetic PCOR and CER 

studies. Our model and its proposed applications are explained in the 

following sections. 

Figure 2.7. Conceptual framework of iS-TR  
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Based on the iS-TR model, we have developed an in silico translational 

research framework to facilitate and expedite the pharmacogenomic 

translational research. This framework consists of a few components including 

a longitudinal EMR-based anticoagulation research database, a database 

miner and analyzer, a population health knowledge base, an anticoagulation 

clinical trial simulator, and a CER Knowledge Base (Figure 2.8). In the 

following sections, the components of the framework are briefly described. 

Wisconsin Anticoagulation Database: WiAD  

To generate meaningful PCOR, researchers need high-quality data, including 

greater clinical detail, longitudinal follow-up, and linkages among data sets 

(Navathe, 2011). To advance research data infrastructure, University of 

Wisconsin-Milwaukee and Aurora Health Care Research Institute have 

collaborated on a multistage project to develop a retrospective EMR-based 

longitudinal anticoagulation clinical database (Wisconsin Anticoagulation 

Database: WiAD) being used for PCOR on most frequently prescribed 

Figure 2.8. In silico translational research framework: In Silico WiAD PCOR 
CER Framework. WiAD: Wisconsin Anticoagulation Database; ETL: Extract, 

Transform, Load. 
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anticoagulation agents such as Coumadin (Warfarin), Heparin, Ticlopidine 

(Ticlid), Clopidogrel (Plavix), Dipyridamole (Persantine), Abciximab (ReoPro), 

Eptifibatide (Integrilin), Tirofiban (Aggrastat), or and Dabigatran (Pradaxa). 

Aurora Health Care is the largest health care system in Wisconsin operating 

15 hospitals throughout the state with more than 3600 licensed beds, 172 

physician clinic facilities, and several other health care related entities. It 

serves about 1.2 million unique patients each year through 7.8 million patient 

encounters per year. So, such an anticoagulation research database 

representing Wisconsin State population has provided a powerful tool for 

conducting outcome research studies on anticoagulation dosing algorithms. 

The details of this database are described in chapter 4. 

WiAD-Miner and Analyzer: 

An interactive data profiling and population “segmentation” tool “WiAD-Miner 

and Analyzer” was developed and used to (a) facilitate the process of patient 

cohort selection using different demographic, clinical, temporal, and 

geographical inclusion criteria and (b) synthesize hypotheses. This tool also 

has some features which are specific to anticoagulation therapy such as a 

module which calculates the Time in Therapeutic Range (TTR) for each 

individual from the electronic medical record (EMR) data. WiAD-Miner’s 

details are covered in Chapter 4. 

Population Health Knowledge Base: 

WiAD is a database that includes data from a geographically widespread, 

diverse racial and demographic patient population across the state of 

Wisconsin. A knowledge base including health, demographic and 

socioeconomic characteristics of original populations of this patient population 
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provides a rich source of complementary information to be used in different 

ways for the EMR-based in silico PCOR CER studies such as (a) quality 

control and assurance in the process of transforming and integrating data into 

the WiAD, (b) generate more accurate virtual patients and patient populations 

by the clinical trial simulator, (c) generate more enriched hypothesis. The 

information in the knowledge base is provided from different sources such as 

the national, state, county and city census data, and state, county and city 

health reports. This details and usage of this knowledge base is demonstrated 

in chapters 5 and 6.    

Pharmacogenetic Clinical Trial Simulator:  

Our pharmacogenetic clinical trial simulator consists of the 5 following 

adjustable modeling components: 1) A Bayesian network model (BNM) to 

produce virtual patient population (“Clinical Avatars”) consistent with desired 

target populations, 2) A dose calculator which calculates an initial dose 

(clinical and PG-based) for each virtual patient, 3) An INR predictor which is 

based on pharmacokinetic/pharmacodynamics (PK/PD) model, 4) A dose 

adjuster which adjusts doses by using different protocols based on INRs, and 

5) An outcome calculator which measures the desired outcomes (e.g., TTR). 

The details of this simulator is described in detail in chapter 5. 

CER Knowledge Base: 

The outcomes of the simulations using the simulator will contribute to the CER 

knowledge base in comparing effectiveness of different anticoagulation 

therapy treatment plans and practices from which evidence-based information 

can be derived by patients, providers, policymakers, and other stakeholders. 

This knowledge is used as a basis for designing and testing different 
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population-based treatment plans in real clinical settings. This details and 

usage of this knowledge base is demonstrated in chapters 5 and 6.  

2.3.) Anticoagulation and Anticlotting 

The phenomenon of coagulation (thrombogenesis) is a crucial component of 

the body’s hemostasis. Through this process, blood creates clots. Coagulation 

disorders can result in different forms of bleeding (hemorrhage) and 

obstructive clotting (thrombosis). Blood coagulation (clotting) is a complex 

process involving many clotting factors which activates each other. The 

details of the process are depicted and explained in Figure 2.9.  

In brief, this process composes of the three following stages: 

- Formation of Prothrombinase 

Prothrombinase can be formed either through “intrinsic system” or “extrinsic 

system” which involves interactions between coagulation factors (e.g., Factor 

VIII, Factor IX).  

- Conversion of Prothrombin to Enzyme Thrombin 

In this stage, prothrombinase converts prothrombin to enzyme thrombin.   

-  Conversion of Fibrinogen to Fibrin (formation of clot) 

Then, thrombin converts fibrinogen into fibrin which forms a mesh to form 

clots. 

Various substances are required for the proper functioning of the coagulation 

cascade (Wikipedia Coagulation, 2014): 

- “Calcium and phospholipid (a platelet membrane constituent) are required 

for the tenase and prothrombinase complexes to function. Calcium mediates 
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the binding of the complexes via the terminal gamma-carboxy residues on 

FXa and FIXa to the phospholipid surfaces expressed by platelets, as well as 

procoagulant microparticles or microvesicles shed from them. Calcium is also 

required at other points in the coagulation cascade. 

Figure 2.9. The Coagulation and Fibrinolytic Pathways. The main coagulation 
reactions are divided into the intrinsic and extrinsic systems. Activation of factor 

XII on contact with a negatively charged surface initiates the intrinsic 
coagulation system. (The activated form of the factor is indicated by “a.”) The 
extrinsic coagulation system induces the formation of a complex composed of 
factor VII and tissue factor, which is released after tissue injury. Some of these 
reactions depend on calcium ions. Thrombin is formed by an enzyme complex 

called prothrombinase, composed of factor X, factor V, negatively charged 
phospholipids, and calcium ions. Intrinsic and extrinsic activation of the 

coagulation cascade leads to the generation of thrombin, the activation of 
fibrinogen, the release of fibrinopeptides, the formation of soluble fibrin, and 

finally, the formation of factor XIII–mediated, cross-linked, insoluble fibrin. The 
main fibrinolytic reactions involve the inhibition of fibrinolysis by plasminogen-
activator inhibitor type 1 (PAI-1) and a2-antiplasmin. Fibrinolysis is initiated by 
tissue plasminogen activator (t-PA), urinary-type plasminogen activator (u-PA), 

and plasmin. Plasmin bound to the surface of fibrin initiates the lysis of 
insoluble, cross-linked fibrin, with the subsequent generation of fibrin-

degradation products. Plasmin bound to the surface of fibrin is better protected 
from inhibition by a2-antiplasmin than is plasmin generated in the fluid phase 

(Kohler; 2000). 
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- Vitamin K is an essential factor to a hepatic gamma-glutamyl carboxylase 

that adds a carboxyl group to glutamic acid residues on factors II, VII, IX and 

X, as well as Protein S, Protein C and Protein Z. In adding the gamma-

carboxyl group to glutamate residues on the immature clotting factors Vitamin 

K is itself oxidized. Another enzyme, Vitamin K epoxide reductase, (VKORC) 

reduces vitamin K back to its active form. Vitamin K epoxide reductase is 

pharmacologically important as a target of anticoagulant drugs warfarin and 

related coumarins such as acenocoumarol, phenprocoumon, and dicumarol. 

These drugs create a deficiency of reduced vitamin K by blocking VKORC, 

thereby inhibiting maturation of clotting factors. Vitamin K deficiency from 

other causes (e.g., in malabsorption) or impaired vitamin K metabolism in 

disease (e.g., in hepatic failure) lead to the formation of PIVKAs (proteins 

formed in vitamin K absence) which are partially or totally non-gamma 

carboxylated, affecting the coagulation factors' ability to bind to phospholipid”. 

Anticoagulation Agents: 

Anticoagulation agents are a class of medications that are developed to 

prevent and reduce blood coagulation and clotting disorders (e.g., DVT: deep 

vein thrombosis, PE: pulmonary embolism, MI: myocardial infarction and 

IS:ischemic stroke). Anticoagulation agents are administered in different 

ways; oral, intravenous, or subcutaneous injection. Different anticoagulants 

interrupt the coagulation cascade at various points (Figure 2.10). Vitamin K 

antagonists, such as warfarin, typically work on and inhibit several calcium-

dependent clotting factors, including factors II, VII, IX, and X. Dabigatran 

directly inhibits factor IIa (thrombin). Apixaban, betrixaban, edoxaban, and 

rivaroxaban inhibit factor Xa. 
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For a few decades, vitamin K antagonists (VKAs) such as warfarin, the most 

commonly used VKA, have been used as the main agents for long term 

anticoagulation therapy (Steffel, 2006). Anticoagulation therapy using dose-

adjusted VKAs has been always an effective clinical option to prevent and 

treat thromboembolic diseases. However, long term management of VKAs is 

challenging as the intensity of anticoagulation represented by measurement of 

international normalized ration (INR) can be out of desired therapeutic ranges 

for a large amount of treatment period. Despite the widespread use of VKAs, 

they have some characteristics that make them difficult to manage, such as 

(a) a narrow therapeutic index/window outside of which there is a risk of 

bleeding events, or thromboembolism which demands regular frequent 

monitoring of INR, (b) a wide inter-individual variability in dose-response due 

Figure 2.10. Coagulation cascade and point of effect of the common 
oral anticoagulants. TF: tissue factor. (Makaryus, 2013) 
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to their pharmacokinetics affected by genetic and physiological factors, (c) 

different levels of interactions with other medications and foods (Hart, 2007; 

Guyatt, 2012).  

In addition to VKAs, there are other anticoagulant agents that can be 

applicable alternatives such as unfractionated heparin, the low molecular-

weight heparins (LMWHs), and indirect-acting factor Xa inhibitors (e.g., 

fondaparinux). However, they have some limitations too. The subcutaneous 

and parenteral route of administration make them time consuming and less 

convenient medications for patients under anticoagulation treatment. 

Furthermore, taking into consideration their specific pharmacokinetics, they 

need continuous intravenous infusion or daily dose adjustment. Some of them 

such as LMWHs have unstable bioavailability under some physiological 

circumstances such obesity or renal failure. 

Novel Oral Anticoagulants: 

These shortcomings and practical limitations of the VKAs and the intravenous 

anticoagulant medications have motivated scientists to develop alternative 

oral medications called novel oral anticoagulants (NOAs) with quick onset of 

action, predictable pharmacokinetics, less need for regular monitoring and 

interactions with other medications and foods. NOAs include direct thrombin 

inhibitors, such as dabigatran, and factor Xa inhibitors such as apixaban, 

edoxaban, and rivaroxaban (Makaryus, 2013).  

The VKAs and NOAs act differently in the body. The first group of 

medications, inhibit gamma-glutamyl carboxylation of coagulation factors II, 

VII, IX, X, and the coagulation inhibitor proteins C and S. On the other side, 

NOAs act on some different proteins in the coagulation cascade (Figure 2.10). 
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Although NOAs have some benefits over VKAs such as predictable 

pharmacokinetic mechanisms which facilitate their dosing without a need for 

routine monitoring, their use have not been popular as expected for some 

reasons such as their high cost versus VKAs and lack of strategies to rapidly 

quantify or reverse their anticoagulant effects (Harder, 2008; Brenner, 2011). 

2.4.) Pharmacogenetics 

Variability in response to medications creates a significant challenge for 

physicians, patients and pharmaceutical companies (Evans, 1999). Factors 

involving in the body’s response to a medication are multifold and complex 

(Table 2.3) (Ma, 2011). A large number of clinical studies have shown that 

variation in genetic make-up of individuals is an important factor affecting the 

medication response in the body. 

Different factors such as environmental effects, physiological factors (e.g., 

medical conditions) and genetic profile variations are involved in the variation. 

The field of pharmacogenetics studies the relationship between individual’s 

response variability to medications and genetic variations (Hewett, 2002). This 

field of study, especially in the light of the complete human genome 

sequence, has motivated many researchers to conduct pharmacogenetic 

studies at an accelerating rate in recent years on many medications which 

were previously recognized to have unpredictable outcomes and unintended 

side effects. 

The knowledge of pharmacogenetics helps to understand some of the 

underpinning causes of these challenges and also implement personalized 

medicine. The main questions asked in the field of pharmacogenetics are: 

what are the genes involved in a drug's mechanism of action? how are a 
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Table 2.3. Major factors affecting individual medication response (Ma, 2011) 

Factors Effects 

Genetic Factors 

     Therapeutic targets 

     Drug-metabolizing enzymes 

     Drug transporters 

     Targets of adverse drug reactions 

      

      Factors with indirect effects 

Major variables; stable and inherited 

     Drug efficacy (pharmacodynamics) 

     Drug metabolism (pharmacokinetics) 

     Drug disposition (pharmacokinetics) 

     Drug toxicity (pharmacokinetics and 

pharmacodynamics) 

     Drug efficacy, pharmacokinetics, and 

toxicity 

Other Factors 

     Environmental factors 

         

        Environmental chemicals, 

coadministered drugs, tobacco 

smoking, alcohol drinking, and 

dietary constituents 

     Physiological factors  

          Age, sex, disease state, pregnancy, 

exercise, circadian rhythm, and 

starvation 

Mostly transient 

     Drug efficacy, pharmacokinetics, and 

toxicity 

      

        

 

       Drug efficacy, pharmacokinetics, and 

toxicity 

 

drug's effects propagated through pathways? how can this information be 

applied to characterize "off-target" adverse events? How can 

pharmacogenomics information be utilized in prescription and dosing 

decisions? (Karczewski, 2012).    

In clinical settings, physicians mainly prescribe medications based on their 

clinical judgment and evidence resulting from clinical trials. They usually take 

into consideration clinical factors (e.g., age, weight, ongoing health condition) 

and behavioral characteristics of patients and genetic characteristics are not 

considered in many settings. This appears to be the case in anticoagulation 

therapy. For example, two groups of patients with similar clinical and 

backgrounds and presentations might undergo the same dosing regimen of 

anticoagulant clopidogrel (e.g., 75 mg/day) or warfarin (e.g., 5 mg/day). This 
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treatment approach might result in a good protection against thromboembolic 

events in one group and might cause side effects in the other group. 

Pharmacogenetic studies have revealed that the patients under clopidogrel 

and warfarin who experience inadequate protection are more likely the ones 

who are poor metabolizers of the medications owing to their variant alleles of 

genes CYP2C19 and CYP2C9 and VKORC1, respectively (Highashi, 2002; 

Aithal, 1999; Rieder, 2005; D'Andrea, 2005; Yuan, 2005; Aquilante 2006). In 

the case of warfarin, these findings have resulted in a sheer number of 

pharmacogenetic-based (PG-based) dosing algorithms explaining a 

significant proportion of the interindividual variability in warfarin dose 

requirement (e.g., Gage, 2008; Anderson, 2007; Klein 2009). 

After taking a medication, it has to go through different components of the 

body to reach its target tissues/cells, then it acts on its target, and eventually 

its metabolites and residues are eliminated from the body. The process of 

absorbing, distributing, metabolizing, and excretion/elimination are regulated 

by pharmacokinetic (PK) genes. Pharmacodynamic (PD) genes regulate the 

effect of medications on their targets. Genes regulating PK and PD processes 

can be involved and led to desired/intended effects by affecting target cells or 

contribute to undesired/side effects by affecting non-target cells. 

Pharmacogenetic researchers try to find the genes involved in both the PK 

and PD pathways that affect drug action in order to improve dosing and avoid 

adverse drug reactions (Karczewski, 2012). 

Different stakeholders such as patients, health care providers, pharmaceutical 

companies and academics can take advantage and are interested in 

pharmacogenetic knowledge. Patients and healthcare providers use 
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pharmacogenetic information to make more informed decisions and determine 

more accurate medication optimal doses. Using pharmacogenetic discoveries 

and knowledge, research teams and pharmaceutical companies are able to 

enhance and facilitate safer and target-oriented clinical trials. 

2.5.) In Silico Clinical Trial Studies 

In silico is a term which is used and referred to tasks performed on computer 

or through computer simulation. In silico techniques and methods have been 

widely used in different disciplines such as engineering, physics, astronomy, 

marketing and economics to foster the process of developing and testing the 

performance of systems. The application of simulation in these fields have 

resulted in reduction of costs and shorter development cycles.  

In last two decades, clinical trials modeling and simulation has gained a lot of 

attention. In silico approaches to conduct clinical trials which employ realistic 

virtual subjects and typical trial conditions, based on both experimentally 

informed disease progress and drug intervention models have been 

embraced by both pharmaceutical companies and also regulatory agencies 

(Kimko, 2003). It provides an opportunity for researchers to develop and test 

hypotheses virtually prior to real-world experiments. Many pharmaceutical 

companies use the clinical trials modeling and simulation techniques to 

facilitate the development of new drugs and make the drugs more efficient. 

Regulatory agencies such as US Food and Drug Administration (FDA) and 

European Medicines Agency have recognized the important role of clinical 

trials modeling and simulation and have advocated using it to support more 

evidence-based study designs and dosing protocols in different target 

subpopulations. FDA underscored clinical trial modeling and simulation in its 
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2004 Clinical Path Initiative as an opportunity which could improve 

predictability and efficiency along the critical path from laboratory concept to 

commercial product: “FDA scientists use, and are collaborating with others in 

the refinement of, quantitative clinical trial modeling using simulation software 

to improve trial design and to predict outcomes.” (FDA, 2004). 

From the perspective of European Medicines Agency, the modeling and 

simulation of clinical trials and PK/PD data contribute to the regulatory review 

process and also drug development because modeling and simulation 

(Jönssen, 2010): “allow more efficient utilization of collected clinical data”, 

“support informed decision making regarding future studies and study designs 

including dose selection”, are beneficial in time and cost savings. Accordingly, 

several European guidelines “recommend modeling and simulation as a 

useful tool to support dose selection and establish dose recommendations in 

special populations”.  

Peck et al. have provided the following detailed technical definition for the 

clinical trial simulation: “the generation of biomarker or clinical responses in 

virtual subjects that take into account (a) the trial design and execution, (b) 

pathophysiological changes in subjects during the trial (disease progress 

model), and (c) pharmacology (drug intervention model), using mathematical, 

statistical and numerical methods and models” (Peck, 2011). 

Components of a Clinical Trial Simulation:  

A clinical trial simulation generally is composed of three following components 

(Holford, 2000):  

1- The input–output model consists of submodels that incorporate the drug’s 

pharmacokinetics and pharmacodynamics, the disease progression during the 
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trial, the trial endpoints, and the residual variability. Some of these submodels 

may include covariate influences on model parameters, which comprise the 

covariate distribution model. Basically, the input–output models are functions 

that map the set of inputs to the set of outputs.  

2- The covariate distribution model describes the distribution of the covariates 

and their intercorrelations.  

3- The trial execution model consists of the study design elements, and 

potential submodels for compliance, protocol deviations, and missing data. 

2.6.) Application of the iS-TR to a Patient-Centered 

Pharmacogenetic Outcomes Research Problem 

Based on the Patient Protection and Affordable Care Act (PPACA, 2010), 

Comparative Effectiveness Research (CER) is a national research priority. 

Under this Act, the Patient-Centered Outcomes Research Institute (PCORI) is 

in charge of supporting the research that takes into account the potential for 

differences in the effectiveness of health care treatments, services, and items 

as used with various subpopulations, such as racial and ethnic minorities, 

women, age, and groups of individuals with different comorbidities, genetic 

and molecular sub-types, or quality of life preferences and include members 

of such subpopulations as subjects in the research as feasible and 

appropriate. Accordingly, PCORI has proposed priorities and research 

agenda with focus on CER studies providing opportunities to assess the 

benefits and risks of adopting genetic tests in patient subsets (PCORI, 2012). 

PCORI has recently published its “Methodology Report” introducing the 

PCORI Methodology Standards (PCORI, 2013). These are specific 

recommendations for researchers that designate the minimal requirements for 
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following PCOR best practices. Under the recommended methods related to 

Heterogeneity of Treatment Effect (HTE: a technical term for the fact that 

different people do not always respond the same way to the same treatment), 

it is recommended to develop methods to use simulation models to (a) 

address questions on heterogeneity of treatment effect, (b) address patient-

centered comparative effectiveness questions, and (c) to support guidance on 

adaptive trials’ complex design specific to PCOR.   

Accordingly, we use our iS-TR model and framework to generate robust, 

relevant, and timely evidence for patient-centered pharmacogenetic outcomes 

research questions. For instance, although the potential clinical value of most 

of the PG-based algorithms versus non PG-based “best practice” treatment 

plans was assessed through rigorous randomized controlled trials, their 

clinical applicability and effectiveness for different target populations have not 

been evaluated which leads to an opportunity for PCOR CER studies using 

our iS-TR framework. 

2.7.) Focus of this study 

As part of continuing effort to address health care challenges through patient-

centered outcomes research (PCOR), we introduce an in silico translational 

research model and framework supporting pharmacogenetic anticoagulation 

PCOR CER prediction and validation studies. This framework is designed to 

demonstrate how current access to large comprehensive electronic medical 

records (EMR) covering diverse patient populations, coupled with novel 

modeling and computational simulations could provide an unprecedented 

opportunity to conduct in silico identification, validation and comparison of 

treatment strategies.  
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3.1.) Patient Populations and Subpopulations 

As discussed in section 1.3, current research paradigms such as traditional 

randomized control trials mostly rely on relatively narrow efficacy data which 

results in high internal validity (i.e., extent to which systematic error, bias, is 

minimized in clinical trials under optimal conditions) and low external validity 

(i.e., extent to which results of trials provide a correct basis for generalization 

to other circumstances) (Glasgow, 2006; Juni, 2001; Kessler, 2011). The lack 

of comparability between trial participants and nonparticipants has resulted in 

a slow pace of translation of new genomic knowledge to clinical settings and 

public health. In almost all of the controlled trials, a small fraction of the total 

number of patients participate. The participants are usually dedicated 

individuals to trial studies who are selected based on strict inclusion and 

exclusion criteria. So, the interventions that are successful in trial patient 

cohorts may not necessarily translate well to the real-world clinical setting. 

This raises questions of the generalizability of the results of clinical trials 

which is one of the important and practical aspects of clinical trials (Elting, 

2006; Schulz, 2010). There are different approaches that can be taken to 

answer the questions, “How can trial results be applied to patients in clinical 

practice?” and “How different are the interventions/treatment plans resulted 

from a given trial study compared with the other available ones?” For 

example, (a) conducting large, population-based effectiveness trials to provide 

evidence on the generalizability of clinical trial results and the realistic benefits 

of treatments, (b) conducting effectiveness studies that examine how a 

therapy/intervention, that works effectively under certain circumstances, works 

in clinical practice, (c) developing trials that fit patients seen in practice and 



www.manaraa.com

51 

 

 

 

their participants share the same characteristics as the majority of patients, 

and (d) another approach is the development of trials that are targeted and 

appropriate to the needs of special populations. Accordingly, continued 

investigation is needed to see how results of clinical trials are translated into 

nontrial care, to facilitate the dissemination of clinical trials findings, and to 

identify ways to achieve faster and more generalizable clinical trial findings. 

This has been the case for pharmacogenomics in the last decade too. 

Enormous number of clinical trials have been conducted or are currently 

under way to test the accuracy of previous dosing algorithms, construct new 

dosing algorithms, or test the value of genetic tests in warfarin dosing, with 

equivocal results. Several clinical trial studies have shown that PG-based 

dosing lead to superior control of warfarin anticoagulation (e.g., Gage, 2008; 

Anderson, 2012), whereas a number of prospective studies and controlled 

clinical trials have failed to show that genotyping improves warfarin dosing 

and anticoagulation control (e.g., Anderson, 2007; Kimmel, 2013). Although in 

those clinical trials thousands of subjects have been recruited, the clinical 

utility of PG-based dosing of warfarin has been mostly tested in small clinical 

trial or observational study populations. 

To deal with such a challenge, overcome the study populations’ limitations, 

and fill the translational research gaps using in silico trial and comparative 

effectiveness studies, in the first step, there is a need to generate realistic 

virtual subject populations and subpopulations representing the patient types 

that are likely to be studied in the actual studies. Among various methods, we 

have used the following methods to create virtual patient populations 
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(hereafter “Clinical Avatars”) in our in silico PC-CER translational framework, 

introduced in section 2.2. 

3.1.1.) Clinical Avatar Model 

Background in Bayesian Theory 

Simulating patient data (i.e., creating “Clinical Avatars”) poses several 

challenges common to big data research including missing values, high 

dimensionality and low sample size. We found that a Bayesian machine 

learning approach can address these issues in an efficient, effective and 

generalizable method. More specifically, our method to generate clinical 

avatars relies on constructing a Bayesian belief networks, hereafter called 

Bayesian network model (BNM). Using Bayes theorem and extensions of 

Bayesian theory, BNMs can accomplish two critical elements necessary for 

modeling patient data, pattern learning and parameter learning. Pattern 

learning describes a method for discovering graphical representation that 

correctly approximates relationships between variables within some set of 

data.  Parameter learning applies a graphical pattern with the names and 

number of categories within the pattern to create a Bayes net. The Bayes net 

is composed of distinct states each with unique conditional probabilities as 

defined by some graphic pattern and estimates provided by either training 

data or evidence.  

As recently summarized by Conca Bielza (2014) Bayesian Classification, (i.e., 

pattern learning) offers distinct advantages in modeling healthcare data over 

other statistical classification techniques (e.g., ad hoc, regression). Types of 

Bayesian classifiers, such as binary, categorical and continuous are used to 

capture the structure of data sets found in patient databases. Such classifiers 
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also efficiently accommodate missing data as well as feature selection in the 

learning and inference stages. Bayesian networks also provide “an explicit, 

graphical and interpretable representation of uncertain knowledge…based on 

the sound concept of conditional independence (as) an example of a 

probabilistic graphical model” (Bielza, 2014). Once the pattern is discovered, 

the parameters can be learned efficiently. In the following section, the basis 

and method to create Clinical Avatars are summarized: the fundamental 

principles of classification, Bayes theorem, Markov Blanket Based DAG 

Discovery and Bayesian belief networks.  

A.) Data Classification 

Classification is a broad term used to describe the process of assigning or 

predicting categorical classes and defining their respective relationships. 

Classification is a two-step process; the first step is termed the learning step 

and the second step is termed the classifier step. During the learning step, or 

training phase, a classification algorithm creates a model by learning from a 

set of training data (i.e., database tuples) and a set of corresponding classes 

C. A tuple, X, is represented by an n-dimensional attribute vector, X = (x1, x2, 

…, xn). X is composed of a random set of predictive n-measurements from the 

tuple of n-database attributes, such that, ai ∈ Ω ai = {A1, A2, …, An}.  Each 

tuple, X, is assumed to belong to a predefined class as determined by another 

database attribute called the class label attribute called C where � ∈ Ω c =
���, �
, … , ��
. The class label attribute is categorical in that each value of cn 

serves as a category or class. Classification denotes instances where the 

class label of each training tuple is provided, are known as supervised 

learning (i.e., the learning of the classifier is “supervised” in that it is told to 
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which class each training tuple belongs). In contrast Clustering denotes 

instances where the class label of each training tuple is unknown, known as 

unsupervised learning and the tuples as organized by a specified measure of 

similarity. The classification problem consists of inducing a model M from a 

random sample of individual tuples called a training set or training tuples D, 

where D = {(x(1), c(1)),…, {(x(N), c(N))} of size N from a joint probability 

distribution p(X, C).   

In the second step, the predictive accuracy of the induced model M is 

estimated. To do so, there are multiple measures such as classification 

accuracy and sensitivity and ROC curve all of which must validated by 

bootstrapping, k-fold cross validation, and/or holding-out a validation set of 

data tuples Xj and their associated class labels Cj from the original training 

data. Validation tuples are selected from the general data set at random. They 

are independent of the training tuples and were not used to construct the 

classifier. Then the accuracy of the classifier on the validation dataset is 

evaluated by the percentage of test set tuples that are correctly classified by 

the classifier. If the accuracy of the classifier is considered acceptable, the 

classifier can be used to classify future data tuples for which the class label is 

not known or can be used to simulate data tuples.  

B.)  Bayes' Theorem 

Bayes' theorem (also known as Bayes' rule) is a means for calculating the 

conditional probability of a random event given some additional information. In 

this section, it is described how Bayes theorem could be used for 

classification of random events (i.e., tuple X) of a given database. In this 

example, X is a tuple of the given database that is identified by measurements 
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of its attributes. For such case, we assume there exists a hypothesis 

indicating that the data tuple X belongs to a specified class C. Then, our goal 

is to determine P(C|X), or the probability that tuple X belongs to class C, given 

our knowledge and evidence on the attribute description of X. P(C), P(X|C), 

and P(X) are called the prior probability and are estimated from the a set of 

statistical evidence. The posterior probability, P(C|X) is calculated using the 

following equation based on Bayes' theorem: 

���|�� = ���|������
����  

As an example, having applied Bayes theorem to issue of correctly 

diagnosing prostate cancer, if we select men at random from a male 

population and remove their prostates for definitive diagnosis of cancer we 

would find the prior probability of prostate cancer, P(has cancer), in the given 

male population. If we want to know the probability that any randomly selected 

man has cancer without removing his prostate, we would want to know all 

relevant information such as age and Prostate Specific Antigen (PSA) level.  

We generate a dataset drawn from a random sample of men that includes 

data on the patients’ age and PSA level. A given patient with the age of 70 

years old and a PSA level of 4.0 ng/mL is represented by tuple X. Suppose a 

physician hypothesizes that her patient has prostate cancer. Then the 

posterior probability or P((has cancer)|X), indicates the probability that this 

random patient will be diagnosed with a prostate tumor given that we know 

the patient's age and PSA level. In this case we can use Bayes theorem to 

find P((has cancer)|X) when we are given P(has cancer), and P(X|(has cancer)) 

or the probability that a prior patient is 70 years old and has a PSA level of 4.0 

ng/mL, given that we know the patient will be diagnose with a prostate tumor.  
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C.)  Pattern Learning: Bayes Classifiers, Bayesian Network Classifiers  

A Bayes classifier applies Bayes theorem to the classification problem.  

Returning to our prostate cancer example, given a random set of variables, 

such as sex, income, car model, and age, we seek a model that can predict 

the probability of cancer in a randomly selected individual. More generally, the 

Bayes classifier defines a model M to a random set of training tuples D, where 

D = {(x(1), c(1)),…, {(x(N), c(N))} of size N from a joint probability distribution p(x, 

c). The Bayesian approach can be described as a non-deterministic 

polynomial-time hard optimization problem under a binary loss function that 

minimizes conditional risk based on prior probability (Bielza, 2014). The 

optimal model is one that seeks to derive the most probable posteriori class 

for any given example xr = (xr1, …, xrn) drawn from the same data source as 

the training tuples, or 

In contrast to the heuristic Bayes classifiers, constraint based Bayesian 

network classifiers approximate ����, �� according to a Bayesian network. A 

Bayesian network is a graphical depiction of a data called a directed acyclic 

graph (DAG) where the nodes of the DAG are the c classes of any given 

variable X1,…, Xn, and the edges (or vertices) define the (in)dependence 

relationships between those variables. In Figure 3.1, the nodes X, Y, Z, W 

X 

Z 

Y 

W 

Figure 3.1. Example DAG 

c                       c 
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correspond to the class C within a given data set. The arrows that define the 

asymmetrical relationships between the nodes X, Y, Z and W describe the 

probabilistic conditional dependences between the nodes. In other words, the 

prior probability of a given parental node such as X or Y can predict 

probability that any given tuple belongs to a particular class of child nodes 

such as Z and W. Once a Bayesian network (i.e., DAG) is constructed, it 

provides a logical and interpretable framework for learning the probability of 

any given set of data. The fact that each variable is conditionally independent 

of its non-descendants in the DAG, given its parents, allows the network to 

provide a complete representation of the existing joint probability distribution 

with the following equation: 

����, … , ��� = � ����|�������� ���
�

�!�
 

where P(x1, : : : , xn) is the probability of a particular combination of values of 

X, and the values for P(xi | Parents(Yi)) correspond to the probability for Yi 

based on a set of training data. 

There are multiple methods for Bayesian networks to approximate joint 

conditional probability distributions or ����, ��. Naïve Bayes modeling takes 

the simplifying assumptions that some class C is the parent of all predictor 

variables and there are no independence relationships between the predictor 

variables. In Figure 3.2 we see that X is the causal parent to Y, W and Z but it 

is assumed that there is no relationship between Y, W, and Z and it is 

X 

Z W Y 

Figure 3.2. Naïve Bayes 
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assumed that x has no parents. Although naïve Bayes requires very strong 

assumptions, it has proven effective in several machine-learning tasks 

(Garcia-Laencina, 2013).  However, in many models the simplifications prove 

too great to effectively model the data. A more complex variant of naïve 

Bayes is an ‘unrestricted’ Bayes pattern seen in Figure 3.3. This graphical 

approximation increases the number of conditional relationships between the 

nodes and thereby dramatically increases the number of states within the 

Bayes net. Models constructed from unrestricted patterns face the problem of 

overfitting and subsequent poor parameter learning.  

A more sophisticated approach allows that X could have some parent ‘a’ and 

there are potential relationships between the variables Y, W and Z. In order to 

find the causal parents of X we must search the Markov blanket of X.  Once 

we find DAG describing the conditional dependencies between classes within 

the Markov blanket, we assume this blanket represents the probabilistic 

dependences existing within a set of data. That is, the behavior of the true 

DAG equates to the DAG discovered within the Markov blanket. This 

assumption is known as the faithfulness assumption (Pearl, 1988; Sprites 

2000). The problem of classification thus becomes one of relationship 

discovery within a projection of some tuple X onto its respective Markov 

blanket.  

Figure 3.3. Unrestricted DAG 

X 

Z W Y 
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A key concept in the graphical representation of conditional independence is 

the concept of d-separation (Figure 3.4). This concept first described by 

(Pearl, 1988) provides the justification for simplified conditional independence 

relationships within a given Markov blanket. For example, we say that X and Y 

are d-separated if on any directed path between X and Y there is some 

variable Z that such that Z is known and is either a diverging parents 

connection or is known and is in serial connection between X and Y.  X and Y 

are also d-separated if there is some common unknown child that X and Y 

converge on, and Z has an unknown descendent. Full descriptions can be 

found in (Pearl, 2000; Pearl, 2009), while truncated but general description is 

explained in (Dawid, 2010). 

There are multiple methods for discovering the relationships within the Markov 

blanket and subsequently Bayesian network (i.e., DAG) discovery. Many of 

these published methods of DAG structure learning have been executed on 

real world datasets (Kalisch, 2010). Below we give a brief introduction into 

several different methods for conducting DAG structure learning as well as the 

assumptions, strengths and weakness. DAG structure learning procedures 

are usually highly variable, i.e., the learnt graph tends to change drastically 

with even small perturbation of the data.  We then elaborate our method 

which accommodates the instability of Bayesian search algorithms through a 

Figure 3.4. D-Separation. 
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combination of ensemble learning techniques each proven to individually 

increase the truthfulness of Bayesian search output.  

There are three branches to which we classify DAG learning methods 

employed on real world data sets, score-based, constraint-based and hybrid 

methods. Score based methods have essentially two parts, a scoring and an 

aggregating method that seeks to optimize the decided upon scoring 

technique. There are several ways of scoring such as negative log-likelihood 

score, Akaike information criterion (AIC) score, Bayesian information criterion 

(BIC) score, Bayesian Gaussian equivalent (BGe) score (Geiger, 1994). At 

each step the search method determines if including, orienting or deleting an 

edge between two notes will increase or decrease the score and optimizes for 

the lowest score. Because the potential relationships within a highly 

dimensional data wrapper are prohibitively large, greedy search algorithms, 

particularly hill climbing algorithms are employed. Greedy Hill climbing 

algorithms optimize local relationships in a forward step adding edges until a 

maximum score is achieved and then a backward step deleting edges until 

the scoring criteria can no longer be improved (Chickering, 2002). 

D.) Markov Blanket Based Pattern Discovery 

Constraint based DAG structure learning views a DAG as the result of a set of 

conditional independence tests applied across the Markov blanket of nodes.  

As such in contrast to scoring algorithms that approach classifier search as a 

simplification of the general classifier optimization problem, constraint based 

DAG searches approach classifier search as a feature selection problem. To 

select a feature, the data is tested against multiple different hypotheses.  

There are many published Constraint based algorithms with variety of 
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different assumptions and potential applications. Several of the mostly widely 

used algorithms are variants of the PC algorithm (e.g. Conservative PC, 

JCPC, PCD etc.), named after its creators Peter Sprites and Clark Glymour.   

Additional algorithms that all reside in this branch include Increment 

Association Markov Blanket (IAMB) and two IAMB variants (Margaritis and 

Thrun, 2000). There is also a large family of constraint-based methods 

designed to deal with latent variables (i.e., variables not found within the 

dataset). These methods, FCI, FCI variants, IDA and several others methods 

all output Partial Ancestral Graphs (PAGs) that can determine if measure 

variables could be the result of some unmeasured (latent) variable.   

Lastly, a third type of popular Bayesian search algorithms can be considered 

combinations of the score and constraint based DAG searches, also called 

hybrid methods. In hybrid methods, conditional independence tests are used 

to determine edges, but each local test between nodes are used to inform the 

proceeding tests. Primarily, the knowledge from each search is used to 

impose restrictions on the search space via a scoring system. Hybrid methods 

include Max-Min Hill Climbing (MMHC) (Tsamardinos, 2006) and L1MB 

(Schmidt, 2007). 

Constraint and Hybrid search algorithms can commonly be broken down into 

two phases, the search phase and the orientation phase. During the search 

phase, the algorithm asks a conditional independence oracle to perform a 

routine statistical test, usually either χ2 contingency test or G-test to determine 

if a pair Markov equivalent nodes are independent or not. Within the pattern 

discovery catalogue of algorithms, there are additional statistical methods for 

hypothesis testing that may be better suited for a dataset. Just as with any χ2 
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or G-hypothesis test, the user has the ability to set an α-value or significance 

value, above which the null hypothesis is rejected. These conditional 

independence tests, and therefore the Constraint based and hybrid searches 

demands that the data be either entirely continuous or entirely discrete. 

The PC family of algorithms performs a backward stepped algorithm that 

begins with a maximally connected Markov blanket. Relationships between 

the classes within the Markov blanket are then tested. If the statistical test 

rejects the null hypothesis the edge between two nodes in the Markov blanket 

is maintained. If the test determines the null hypothesis true, the edge is 

deleted stepwise until a graph depicting all true relationships. The conditional 

independence oracle describes a strategy for passing the tuples through the 

series of conditional independence tests that are performed across the 

Markov blanket.  

If two Markov nodes reject a null hypothesis via the conditional independence 

test, the algorithm outputs an undirected edge between two variables. Once 

all necessary independence tests have been applied across the Markov 

blanket, the algorithm enters the orientation stage. Here the algorithms 

determine directionality of the edges via application of the d-separation 

principle across triplets of tuples as well as the orientation rules described by 

Meek (1995). Orientation of the arrows is particularly susceptible to small 

perturbations of the data and can result in a partial failure of the algorithm.  

Partial failure would include multiple undirected edges and edges that are bi-

directional.  When search results demonstrate such a partial failure, a Pattern 

Graph can include several symmetrical relationships. Since DAG represents a 

collection of asymmetrical relationships, a single search result can suggest 
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multiple potential DAG’s.  

E.) Parameter Learning: Bayesian Belief Network 

A Bayesian belief network (G, Θ) is composed of two elements. ‘G’, a directed 

acyclic graph (DAG) and ‘Θ’ a subsequent collection of conditional probability 

tables (CPT) defined by the Bayes net parameters draw from the DAG. Figure 

3.5 depicts a modified Bayesian belief network example from (Jiawei Han et al 

2006). The DAG defines certain states within a bayes net, the parameters of 

which can then be learned. The DAG and subsequent parameters may 

correspond to actual attributes given in the data or to "hidden variables" 

believed to form a relationship (e.g., in the case of medical data, a hidden 

variable may indicate a syndrome, representing a number of symptoms that, 

together, characterize a specific disease).  

FamilyHistory Smoker 

LungCancer Bronchitis 

PositiveXRay Dyspnea 

CPT 

P(LC | FH, S) FH, S FH, ~S ~FH, S ~FH, ~S 

LC 0.8 0.5 0.7 0.1 

~LC 0.2 0.5 0.3 0.9 

 

 (a) 

(b) 

Figure 3.5. A simple Bayesian belief network: (a) A proposed causal model, 

represented by a DAG. (b) The conditional probability table (CPT) for the 

values of the variable LungCancer (LC) showing each possible combination 

of the values of its parent nodes, FamilyHistory (FH) and Smoker (S). Figure 

is adapted and modified from (Jiawei Han, 2006). 
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The belief network in Figure 3.5 includes six binary variables with the ability to 

infer the probability of either a ‘PositiveXRay’ or ‘Dyspnea’. For example, 

having lung cancer is influenced by a person's family history of lung cancer, 

as well as whether or not the person is a smoker, but is d-separated from 

bronchitis. Note that the variable ‘PositiveXRay’ is independent of whether the 

patient has a family history of lung cancer or is a smoker, given that we know 

the patient has lung cancer. In other words, once we know the outcome of the 

variable ‘LungCancer’, then the variables ‘FamilyHistory’ and ‘Bronchitis do 

not provide any additional information regarding ‘PositiveXRay’. That is, given 

the rules of d-separation, p(PositiveXRay | Smoker, Lung Cancer) and 

p(Dyspnea | Lung Cancer, Bronchitis). The edges also show that the variable 

‘LungCancer’ is conditionally independent of ‘Bronchitis’, given its parents, 

‘FamilyHistory’ and Smoker. 

Thus, a DAG provides a probabilistic Bayes net that approximate the optimal 

inferred probability. A belief network includes one conditional probability table 

(CPT) for each variable. Any node within the network can be selected as an 

“output” node, representing a class label attribute. There may be more than 

one output node.  Figure 3.6 includes an example CPT for the variable 

‘LungCancer’.  

FamilyHistory Smoker 

LungCancer 

P(FH) P(S) 

P(LC |FH, S) 

Figure 3.6. An Example of CPT for the variable “LungCancer”. 
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The CPT, labeled (b) within the Figure 3.5, provides the conditional probability 

for each known value of ‘LungCancer’ is given for each possible combination 

of values of its parents.  

P(LungCancer = yes | FamilyHistory = yes, Smoker = yes) = 0.8  

P(LungCancer = no | FamilyHistory = no, Smoker = no) = 0.9 

The probabilities that satisfy the specified states within the Bayes net are 

called ‘parameter learning’. There are several algorithms for learning, or 

estimating, the parameters, Θ, of a network. When the data is complete (e.g., 

without missing values), the Maximum Likelihood Estimator, MLE can be used 

to calculate the conditional probability of a given parameter, where D is any 

given node within the network 

max& log ��*|Θ � 

This limit of which is calculated via the following, where Nx is the number of 

counts within the training data set as defined by pax or the parents of the 

desired node. 

 

 

ML-θ/,0123 =  4/,012
∑ 4/,012/

 

 

A similar version of the MLE is called the MAP-estimator that relies on a 

dirchlet distribution of variables. This allows the user to specify with prior 

evidence or knowledge the specific distributions or priors of the model. 

max& log��*|Θ ���Θ� 
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MAP-θ/,0123 =  4/,012 +  9/,012 
∑ 4/,012/ + ∑ 9/,012 /

 

Both the MLE and the MAP-estimator demonstrate similar behavior; they both 

are asymptotically equivalent and consistent as the counts are varied within 

the training model.  More importantly both algorithms rely on sufficient 

statistics. The concept of sufficient statistics is two fold, both of which are 

critical for properly training the parameters of a model. First, if there is no 

training data provided to estimate the likelihood of a given parameter the 

algorithm has no sensible way for calculating the conditional probability.  

These cases are most common in data with significant outliers or subclasses 

within the data.  

Second, sufficient statistics also implies a subtle rule that assumes there is no 

bias within the original training data set. For instance, if we return to our 

example Bayesian belief network at the beginning of this section we can 

imagine that if we are to sample only individuals that were already in the 

hospital instead of the general population, our maximum likelihood estimation 

would primarily consist of individuals that did not represent the general 

representation of the belief network.  Unintended bias is a significant 

contributor to weak and ineffective Bayesian modeling.  

If the data has missing values the ML and MAP algorithms are unable to 

produce estimates. In these cases, parameter learning must be accomplished 

via the Estimator Maximizer (EM)-algorithm or some similar variant that has a 

sensible means of dealing with the missing data. The EM-algorithm is a two-

step algorithm. In the first part, it computes an expected count missing value 

based on inference from the Bayesian network. 
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Once it computes the value it estimates the probability for the given parameter 

using the ML or MAP algorithms. This continues iteratively until the 

probabilities converge within some predetermined threshold, usually 0.0001.  

When large amounts of data are missing or when multiple latent variables 

exist, learning parameters becomes increasingly variable. Additionally, it has 

been repeatedly demonstrated that since the EM and similar algorithms have 

weaker guarantees than the ML or MAP algorithms, they become trapped in 

local maxima (Liao, 2009). Although there are several modified versions of the 

EM algorithm that have improved on the original presentation, as of yet, none 

provide robust results when missing values for any given parameter rise 

above 30% (Kohavi, 1999). Therefore, domain knowledge, and data 

preprocessing retain critical importance when constructing the training data to 

provide the model.  

Method 

A.) Bayesian Network Modeling for Clinical Avatars 

Stoll and Schubert (Keeler, 2006) suggest a four step semantic chain from 

raw data to wisdom. Similarly, our method follows a four-step logic chain to 

progress from a set of data to clinical avatars (Figure 3.7). The method can be 

Section 1 

Section 4 

Figure 3.7. Semantic chain from raw data to understanding. 
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partitioned into four broad sections: (1) Data and knowledge aggregation and 

preprocessing. During this step, the data must be acquired from a source and 

characterized alongside any additional information regarding the nature of the 

collection method and data dictionary that could unintentionally bias the 

resultant clinical avatars. Additionally, and expert knowledge from published 

or unpublished sources should be developed and employed to enrich the 

patient data. (2) In the second section, an ensemble of Bayes search 

algorithms are employed along with the domain knowledge acquired in 

section 1 to discover any significant relationships between variables present 

in the patient data. The relationships are then mapped graphically in one or 

several Directed Acyclic Graphs (DAGs). (3) In section three the DAGs are 

used to construct an ensemble of parametric models that allows the 

estimation of joint conditional probabilities and subsequent deriving an 

instantiated model. Once the ensemble DAGs and conditional probabilities 

have been aggregated into data generating models we consider it a Bayesian 

network model (BNM). (4) In section four, the BNM is cross validated against 

a subset of the original data held out from sections 2 and 3. Each section 

therein consists of several steps summarized in Appendix Figure 3.21. 

Section 1: Data Preprocessing and Gathering of Domain Knowledge 

Before modeling can begin, the appropriate data must be aggregated into a 

data wrapper. The method described here is flexible. Almost any type of 

healthcare data can be used to train the BNM. However, in accordance with 

the “No-Free-Lunch theorem”, (Wolpert, 2008) minor modifications in the 

pipeline to accommodate specific data sets will invariably benefit the model. 

The quality of the data used to train and validate the BNM will reflect almost 
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identically the quality of the BNM produced. It is quite possible to produce a 

perfect model from imperfect data, a model with little relevance. Therefore, 

despite the empirical principles this method employs, domain and expert 

knowledge remain critical. Further, it is paramount that care and thought be 

applied during the querying and accumulation of the data before embarking 

on the modeling process. Once this is accomplished, the data can be brought 

into the pipeline for generating clinical avatars.  

This section has two branches performed in parallel. In Part I we accumulated 

domain knowledge (i.e., expert knowledge or literature-defined knowledge) to 

better understand both the specifics of our data such as the way the data was 

gathered, the semantics of the data dictionary and any measurement error as 

well as the general relationship between the variables as found in literature 

review. In Part II the patient data is characterized and prepared (i.e., data 

preprocessing). Data preparation is a multistep process as described in 

Appendix Figure 3.21. Once the data has gone through the data 

preprocessing procedure it is aggregated into a data wrapper.   

Part I:  

It has been said, “there can be nothing fully automatic about causal discovery” 

(Dawid, 2009). Domain Knowledge, both regarding the nature of the sample, 

the techniques involved in imputing or deriving the data and the general 

relationships between the variables is all critical for the development of clinical 

avatars. Domain knowledge is critical in accurately preparing the data for 

modeling. Deciding how to aggregate the data, how to accommodate outliers 

and appropriate handle missing values are all depending on the researcher 
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making explicit choices about the nature of the data and the intent of the final 

model. 

Beyond the data preparation, domain knowledge performs three definite 

functions within the clinical avatar pipeline. First, domain knowledge can 

constrain the search space of the Bayesian search algorithms by imposing 

known relationships across the data. The search space can be constrained 

via, required causal relationships and forbidden relationships. Required 

relationships are defined by a corollary link between variables previously 

established in peer-reviewed literature. Forbidden causal relationships restrict 

the search from finding false positive causal relationships in the data. The 

variables can also have a series of relationships defined by hierarchically 

categorizing the variables according to the principles of causation. By 

classifying the variables in this manner, the user forbids directed relationships 

from higher to lower tiers. Constraints typically make the structure learning 

more efficient and can improve the validity of the resultant DAG.   

The second function of domain knowledge is to provide directionality to the 

arrows across the Bayesian search results. Arrow directionality within a DAG 

is a subtle and nuanced subject, the significance of which is discussed in an 

upcoming section. Often times Bayesian classifier algorithms produce 

ambiguous directional results. There are three sources for this ambiguity 

because of the weak guarantees within the proofs necessary for theorems to 

be true, uncertainty within the training data and the inherent weak 

philosophical underpinnings of causality in the first place. In fact, some 

statisticians view causality as nothing more than a convenient concept. As an 

additional confounder, there are certain times when the directional causal 
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relationship may change over time. To give a short example borrowed from 

Sprites (2000), if the variable under consideration is the rotation of a car tire, I 

could determine that the function of the car engine is causal parent of the tire 

rotation. However, if I were to try and kick-start the engine via pushing the car 

down a hill and use the motion of the car to start the engine, then the direction 

of the rotation of the tire would be the causal parent to the engine starting. 

The result is often a direct cyclic graph and the directionality of certain causal 

relationships must be determined via domain knowledge. It is important to 

note these ambiguous or time dependent relationships as best as possible 

within a given dataset. 

Domain knowledge also comes into play while aggregating the Bayes pattern 

learning results. Once the results are aggregated, we use domain knowledge 

in parallel with empirical methods to determine the edges that should most 

likely be pruned. In general, domain knowledge can help support the 

simplifying assumption of developing DAG while also preparing the data to 

reduce the violations of those assumptions. In all three points of applying 

domain knowledge ad hoc to the modeling method there is a varying amount 

of uncertainty. However, to account for such inherent uncertainty in the model 

we combine several plausible causal structures into the final pipeline.  

Part II: 

Data Reduction and Characterization: 

Here the variables that are desired to be included in the model are segregated 

from the dataset. This includes the establishment of a data dictionary to 

document the significance of each variable. The goal here is to statistically 

describe the nature of each variable following data parsing.  It is important to 
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pay attention to the outliers and any missing values within the data.   

Data Cleaning: 

Of particular important in this process is the role of missing values. If there are 

no missing values, then we proceed to “Data Discretization and Aggregation”. 

Missing data can compromise the robustness of any statistical model and 

additional steps must be used to handle missing values. First the nature of the 

missing values must be determined. There are three forms of missing values, 

‘missing at random’, ‘missing completely at random’ and ‘not missing at 

random’. Missing at random denotes cases where missing values are 

scattered around the data at random and there are no hidden variables that 

contain missing values. ‘Missing complete at random’ denotes datasets where 

there is a hidden variables that is not represented in the training data and not 

missing at random where all variables are present, but missing values are 

concentrated in local classes.  

1.) If the missing values are randomly distributed and deleting all patient 

cases with missing values does not significantly alter the 

representativeness of the data, then delete the all rows of missing data 

and proceed to “Data Discretization and Aggregation”. We define 

significance as a change in proportion of 30% or greater in any single 

variable (Friedman, 97; Ramoni, 2000).  

2.) If the missing values are randomly distributed, but deleting the patient 

cases significantly alters one or more variables, then proceed to the 

following step. 

3.) If the missing data is non-randomly distributed or if the missing values 

are randomly distributed, but deleting the patient cases significantly 
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alters one or more variables, then imputation should be considered.  

The specifics of imputation are outside the scope of this document. If 

an evidence based method exists for imputing missing values that the 

research is confident in, the researcher should apply those methods 

wherever possible.  

4.) If the imputation method was capable of increasing data coverage to 

>70% in any given variable then proceed to “Data Discretization and 

Aggregation”.  

5.) If following execution of the imputation method, if any variable has 

more than 30% of values missing, then randomly assign values until 

data coverage increases to >70%. 

Every effort should be made to ensure that missing values are treated in the 

appropriate method. Additionally, not all missing values are of equal 

importance within the DAG it will train. Variables that are discovered to be the 

parent nodes to other child nodes are more sensitive to missing values than 

variables in the child nodes. Deleting data with missing values can both 

introduce bias into the results and prevent accurate estimation of conditional 

probabilities with the training the data. Each data set must be prepared 

according to the specific characteristics of the data. Preparation of the data 

should be approached as part of the experimental process in developing 

clinical avatars.  

Data Discretization and Aggregation: 

Often healthcare data includes a mix of categorical and discrete data, such as 

race and gender, and continuous data such as age and height. The Bayesian 

search algorithms we employ require training data that is either entirely 
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continuous and normally distributed or entirely discrete. The Aurora Health 

Care dataset included a combination of both continuous and discrete 

variables, therefore the continuous variables were discretized. The process of 

discretizing continuous data is a ubiquitous data preprocessing technique that 

must balance information loss inherent in the process with the benefits of 

greater processing efficiency. There are numerous discretization methods and 

the choice can impact both the posterior probability estimation as well as the 

discovery of inherent causal structure in the underlying graph. We employed a 

common unsupervised method, EqualWidth that has demonstrated its ability 

to produce accurate data mining results for Bayesian search algorithms when 

compared to other techniques (García-Laencina, 2013).  

Generally, there is a balance between information loss inherent in the 

discretization process and the need for sufficient population sizes to estimate 

conditional probabilities. For example when EqualFrequency is applied to 

normally distributed continuous variables, datums that approach the minimum 

and maximum are grouped into bins with more frequent ages. This has the 

advantage of providing additional data to determine the conditional probability 

of any particular state. In contrast, Equalwidth provides age bins that are 

consistent in size but have some bins with low frequency. In regard to learning 

the network structure, Sprits noted that a distinct challenge in discretization of 

continuous features is that conditionally independent continuous variables 

may be transposed into non-conditionally independent discretized foils.  

Therefore it is important to evaluate discretization methods that maintain the 

underlying causal relationships (Sprites, 2000). In practical application with 

the Aurora data, we found consistency and improved performance in 
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Bayesian classifier search results using EqualWidth when compared to other 

methods.   

Section 2: Directed Acyclic Graphs and Ensemble Learning 

Weakness within Bayesian Classifier searches:  

As outlined above, there are many Bayesian techniques for learning the 

causal structure of the variables. However, each of these methods is built 

upon several assumptions. For example, the PC algorithm and associated PC 

variants (e.g. CPC and JCPC) have the following assumptions: No hidden or 

selection variables that would suggest the number of variables grows with the 

sample size, if the underlying DAG is sparse, the data is multivariate normal 

and satisfies some regularity conditions on the partial correlations (Kalish, 

2007) and (Kalich, 2014). In contrast the FCI family of algorithms presumes 

that there may be hidden and selection variables; consistent in high-

dimensional settings if the so-called Possible-D-SEP are sparse (Sprites, 

2000), the data is multivariate normal and satisfies some regularity conditions 

on the partial correlations. These assumptions are necessary for the 

truthfulness of these search algorithms, yet they can often be violated and 

produce accurate results (Sprits; 2000; Domingos, 2012). How or to what 

degree the search assumptions may be violated and remain truthful is not 

consistent between data sets. Additionally, there is no known algorithm for 

determining the bounds that any given algorithm can be violated.  

Sprites (2000) does however offer a general guide of nine factors that 

determine the precision and accuracy of a DAG: 1. The correctness of the 

background knowledge, 2. How closely the Causal Markov Condition holds 

(e.g., no inter-unit causation, no mixtures of subpopulations in which causal 
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connections are in opposite directions), 3. How closely the Faithfulness 

Condition holds (e.g., no deterministic relations, no attempt to detect very 

small causal effects), 4. Whether the distributional assumptions made by the 

statistical tests hold (e.g., joint normality.), 5. The power of the statistical tests 

against alternatives, 6. The significance level used in the statistical tests, 7. 

The sample size, 8. The sampling method, 9. The sparseness of the true 

graphical model. Our goal then is creating a method that can be applied to 

any healthcare data set is to produce an evidence based method that can 

address the weaknesses in each Bayesian learning algorithm while 

simultaneously optimize the nine above conditions to determine the precision 

and accuracy of the DAG. In the following section, we describe several 

ensemble-learning techniques used in concert for increasing the robustness 

of DAG learning when employed on real world data sets. 

Bayesian Ensemble Learning  

Although there may be one particular algorithm that performs better for one 

data set over another, instead of experimenting to find one particular superior 

variation, the researcher can include many different algorithms at once with 

little additional effort. In many branches of applied machine learning 

ensembles have become the standard. As computational power increases 

alongside new combinations statistical techniques already developed (as well 

as those underdevelopment) the trend is towards ever-larger ensemble 

techniques. There are many techniques that have demonstrated improved 

results by linearly combining several Bayesian classifiers into an ensemble 

technique. The question then becomes what combination of ensemble 

techniques can best be applied to develop clinical avatars.  
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There are three widely tested and proven techniques within Bayesian 

ensemble learning, bootstrap aggregation (Bagging), Bayesian boosting and 

stacking.  Bagging is often considered the simplest technique. From one set 

of training data, the data is resampled at random and from each resample 

passes through a Bayesian search algorithm. Bagging has been shown to 

limit increase bias while dramatically increasing variance. There are both 

multiple methods for generating the random bootstraps and for combining 

results of the Bayesian searches. Boosting builds upon a similar principle as 

bagging, however, the results of each classifier result has a weight. The 

weights for each training set are varied so the proceeding classifier, training 

examples have weights, and these are varied so that each new classifier 

focuses on the previously weak results. In essence, boosting using several 

weak Bayesian classifiers and combines them into a single strong Bayesian 

classifier. In stacking, the outputs of individual classifiers are feed as input into 

a second Bayesian classifier. The second Bayesian algorithm then decides 

the best way to aggregate the results (Domingos, 2012). Our method includes 

the following ensemble techniques, bagging, two distinct methods of 

constraining both score and constraint based search algorithms with of 

domain knowledge, and lastly Bayesian Model Combination.  

The use of multiple bootstraps has been shown to address bias and variance 

reduction within the data and therefore reduce the number of false positives 

and false negatives (Friedman et al 1999). The demonstration of why bagging 

works and its implications has been discussed at length in previous 

publications (Domingos, 1997). As noted above, bagging generates an 

ensemble of DAGs from the bootstrap resamples of the training data and then 
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minimizing the overall distance to the entire ensemble derives an aggregated 

DAG. The size, the number of variables and character of those variables has 

an important role to play in the method used to bootstrap and segment the 

data into validation and training subset. There are several methods for 

bootstrapping that have demonstrated optimal results for particular sets of 

data. Four of the most common bootstrap methods were compared in a 

review by Broom (2012); the classic with replacement bootstrap, the Bayesian 

(or parametric) bootstrap, the bias corrected bootstrap and the double 

bootstrap aggregation (i.e., bootstrapping a bootstrap). Generally speaking 

the Bayesian bootstrap and the classic with replacement bootstrap perform 

comparably. There are several conditions that inform the researcher as to 

which technique should be applied to which data set (Broom, 2012). Bagging 

averages out General Noise features that cannot be cleaned from the data 

over progressively larger ensembles. Because we employ a pruning 

technique that removes edges with less that 50% commonality, this bagging 

also reduces false negatives. 

In experimentation with EMR data we employ a “repeated leave one out 

bootstrap aggregation” method (Clyde, 2004; Jiang 2007). Holding out data 

for cross validation is considered a data mining ‘best practice’ (Belazzi, 2004). 

However, when the sample size is small and outliers are important 

considerations in the data, holding out any amount of data reduces variance 

in the model. Therefore, it is recommended to perform the bootstrap sampling 

of the original data prior to the dividing the data between training and 

validation subsets. The choice of bootstrap sampling technique can ultimately 

impact the quality of the model. 
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The bootstraps should be drawn randomly with replacement to subsample of 

equal size to the original data. Regardless of what technique is used for 

bootstrapping, once the data is bootstrapped, then each bootstrap should be 

divided into training and 20% validation subset. The validation data should be 

pooled for validation of the BNM, while the training subsets should remain 

distinct for DAG training.  

The question of how many bootstrap resamples are needed is not easily 

answered because it depends on the specific sample size, dimensionality and 

characteristics of the data. Previous studies (Friedman, 1999) have used 

anywhere from one to two hundred bootstrap resamples to 2500 bootstrap 

resamples (Broom, 2012). No experiments to date have determined how 

many bootstraps are necessary when using conditional independence 

Bayesian search algorithms (such as the PC algorithm) with multidimensional 

data. However, our results demonstrate some consistency with the asymptotic 

improvement of search results with minimal increase in bias. Generally, the 

number of bootstraps should increase as the sample size gets smaller and the 

dimensionality gets larger. Across several types of Bayesian search 

classifiers, the ability for bagging of any variety to correctly infer causality 

breaks down between n=125 and n=250. We found that in healthcare data 

with 20 variables can be resampled with as few as 5 bootstraps and 

significantly increase variance and improve search results.  

As an additional method for increasing variance and correcting for bias in the 

generation of clinical avatars we recommend performing an ensemble of 

Bayesian classifier search algorithms on each bootstrap of data. Although it is 

likely that one search algorithm will produce the most accurate DAG, by 



www.manaraa.com

80 

 

 

 

performing multiple types of Bayesian classifier searches on each bootstrap 

we found iterative convergence on particular edges. There are multiple ways 

to increases variance and adjust for bias in the selection of Bayes search 

algorithms. Since each particular Bayes search algorithm has specific 

assumptions (e.g., PC algorithm vs. IAMB) and it may be unknown as to 

which assumptions best suit the data, we suggest performing several types of 

algorithms on the same dataset. For example, given a set of training data the 

CFCI may produce superior results to the CPC algorithm if the data contains 

latent variables that affect the conditional probabilistic dependences since the 

CFCI does not make the same assumptions of no latent or hidden variables 

perturbing the data. If however there are known latent variables but it 

unknown definitive whether they affect the probabilistic dependences in the 

data, than the CPC algorithm may produce superior results.  

If the data has significant non-random missing values, or other forms of 

sampling bias, we recommend a second method for broadening the ensemble 

of Bayes searches. This method involves constraining some search 

algorithms with domain knowledge and allowing other the search algorithms 

to perform the search unconstrained the adjusting the orientation of the edges 

according to some predetermined tiers (see Section 1 Part II). The PC 

algorithm as well as variants of the PC algorithm (e.g., CPC, JCPC) is 

receptive to constraining the search space via domain knowledge. If you 

impose particular forbidden or required edges on the search space, the 

conditional independence oracle will adjust the series of independence tests it 

performs across the data. In highly dimensional data sets with limited sample 

size, this can increase the variability between search results. An additional 
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method involving ambiguity or time sensitive uncertainty within the domain 

knowledge is to modify the domain knowledge between certain bootstraps or 

groups of bootstrapped data sets. This enriches the hypothesis space that 

allows for certain DAGs to be true at certain moments in time and allowing 

others to be right at other times. As similarly recommended by Spirites (2000), 

we do not recommend the Bonferonni adjustment for multiple hypothesis 

tests.  However, if perform a large number of searches on the same data 

vector, it is possible to increase α to a more stringent parameter such as α = 

0.01 or 0.001. In respect to the PC family of algorithms, the graphical output 

because increasingly sparse as α value increases.  

Once all the necessary searches have been performed on the data, the 

resultant DAGs must be aggregated. There are several methods described for 

combining Bayesian search results. In accordance with other applications of 

Bayesian ensemble learning, we recommend combining all edges for each 

bootstrap and then pruning the edges according to some cut off. Depending 

on the dataset, some have pruned edges that were returned in greater than 

20% of search results, while others have selected edges that received 50% or 

more commonality. As of yet, there is not demonstrated empirical technique to 

determine how to aggregate edges within an ensemble of Bayesian search 

results. Therefore, we recommend applying both the 50% common edges 

and/or those edges that are supported by the domain knowledge aggregated 

prior to performing the search.  

With any data or domain knowledge that has the potential for significant bias, 

we recommend performing Bayesian model combination. Bayesian model 

combination has been demonstrated to improve search results when 
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compared to and combined with other ensemble learning techniques, 

(Monteith, 2011). Bayesian model combination is unique from aggregating 

multiple search results into one DAG because it allows for multiple potentially 

true DAGs to exist given ambiguous training data and or domain knowledge.  

Bias can be significant if the original training data contained missing values 

approaching 30% in any given variable and/or there was imputation 

performed. The essential element of Bayesian model combination is that 

instead of converging all Bayesian searches performed in this section into a 

single DAG, several resultant DAGs are then used in parallel for section three.  

Each DAG is used to derive a parametric model that is input into conditional 

probability estimators. Each DAG plus conditional probability will ultimately 

generate data via Monte Carlo simulation. The data is then aggregated via 

either a Dirichlet weighted distribution or an unweighted distribution. Lastly, to 

further demonstrate the robustness of particular classifiers, this aggregation of 

data can be searched and the results compared to the DAGs used to model 

the input data.  

A strength and a weakness of DAG’s are their openness to interpretation. No 

fewer than half a dozen different interpretations are used in the application of 

DAG’s to various fields and in their theoretical discourse. Standard practice in 

Epidemiology dictates that the directed arrows within the DAG have direct 

causal meaning, (e.g., “X � Y“ would read as X is the causal parent to Y, or 

even stronger, X is the cause of Y) (Evens, 2012). There are three explicit 

assumptions that must be undertaken to assume that DAG’s represent a 

causal map: 1.) There exists some true DAG that is a causal DAG 

representation of the system being studied, 2.) This causal DAG is identical to 
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the DAG representative of the probabilistic conditional independence 

properties of the system, 3) The third is the faithfulness assumption, that the 

causal DAG is a probabilistically faithful representation of the system. A 

weaker interpretation has been described as probabilistic conditional 

independence of two particular variables and the causal independence of 

those same two variables given a third (Sprites, 2008).   

In the development of clinical avatars we apply the most robust and 

theoretically truthful interpretation of the DAGs. According to a strict 

theoretical presentation, A DAG mirrors the symmetric conditional 

independence relationships within the data and imposes asymmetric 

probabilistic relationships between the variables via geometric interpretation. 

The directionality of the arrows, in a purely theoretic plane, has been 

described as “artifact…although it plays an important role in the formal syntax 

of the model it has no direct counterpart in the world and contributes only 

indirectly to the semantic interpretation of the model” (Dawid, 2010). Because 

of the ambiguity inherent in any given DAG, the bootstrap aggregation 

(“Bagging”) procedure provides more robust clinical avatars. By widening the 

hypothesis space to include a greater collection of possibly true results (e.g., 

DAGs), we allow for the final clinical avatar population to be maximally 

consistent with conditionally independent relationships within both the data 

and the real world representing the data. Any additional reference to specific 

strong causal relationships found within the DAG search results are strictly 

outside the scope of developing clinical avatars. We do recognize that this 

method could be used to guide a more causally complete interpretation of a 

given set of data. Applying the clinical avatar pipeline would be useful in 
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inferring causal patterns in a number of fields and datasets. Nevertheless for 

the development of clinical avatars this strong assumption is not necessary.  

Rather it is more important to find the significant probabilistic relationships that 

need to be replicated in order to capture the essence of the data. The 

resultant DAG from the executed searches is used to derive a parametric 

model that is input into conditional probability estimators. The DAG plus 

conditional posterior probabilities will ultimately generate clinical avatars.  

Section 3:  Estimating Conditional Probabilities via Ensemble learning 

Once the DAG is developed in section two there are a variety of 

computational efficient Bayesian algorithms that estimate the conditional 

probability of each particular state within the DAG. However, as noted in the 

introduction section, there are several important assumptions that should be 

examined before applying these algorithms to the training data. Again these 

assumptions revolved around statistical sufficiency. We found that bagging in 

the same manner as completed in section 2 for structure learning, can 

dramatically improve the resultant clinical avatars. The original training data 

can be bootstrapped via a parametric bootstrap or a classic bootstrap. 

However, of critical importance, we recommend again holding out a portion of 

the data within the bootstrap to be used for validation of the model.  

Even with bagging there are challenges of statistical sufficiency. There are 

times when the available training data is not sufficiently large to calculate the 

probability of a parameter within the Bayes net. When such an event occurs 

there are several ways to refine the model to appropriately accommodate the 

available training data. We suggest that the DAG be simplified via removing 

edges from the DAG results one at a time in order of confidence until 
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sufficient cases exist within training data to calculate conditional probabilities.  

There are several methods to determine robustness of an edge within a DAG.  

We recommend the following logic flow for pruning edges from the DAG until 

there are sufficient cases in the training data to calculate the conditional 

probability for all relevant states from the parent nodes.  

1.) If ensemble Bayesian searches were performed on the data, delete the 

edge that returned the fewest search results  

2.) If there were not multiple searches performed, iteratively complete the 

search at a more stringent α value until an edge is deleted.  

3.) If all search results produce the same causal parents to the point of α = 

0.0000001 then use evidence and or domain knowledge to delete the 

least robust edge 

4.) Lastly, if there is no relevant domain knowledge or unambiguous 

evidence then use regression to delete the least robust edge. 

Once the DAG has been simplified, the conditional probabilities derived from 

the simplified model were then used as input for the original parametric 

model.   

The second element of statistical sufficiency is the issue of missing values.  

Although as noted in the background section, MLE and MAP-estimators 

produce stronger results because they are not subject to becoming trapped in 

local maxima within high-dimensional datasets, they are unable to 

accommodate missing values. Therefore if data has non-random missing 

values, and certain parameters have a high concentration of missing values 

while others do not have missing values, we recommend that the parameters 

without missing values be estimated use MLE or MAP-estimators while the 
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parameters with missing values use the EM or EM-variant algorithm to 

estimate the parameters. If any sub-parameter within a categorical data set is 

also subject to a concentration of missing values greater than 30%, we 

recommend using the Median probability for the variable on as a whole if 

binary or the average if it is categorical.   

Once the parameters of one or more Bayes net are estimated via the training 

data, the estimations should be aggregated into a single instantiated model. 

Here the conditional probability estimates from several algorithms can be 

combined into an ensemble for each bootstrap of data. Each parameter 

should be estimated using the most robust technique given the limitations of 

the available data. Once each parameter is associated with a conditional 

probability, a set of data can be generated using Monte Carlo simulation 

techniques. Each bootstrap and instantiated model should have an equal 

amount of data generated. We have called these sets of data "preliminary 

avatars" since they satisfy the conditions of being simulated patients. But 

since the model has not yet been validated they cannot yet be considered 

“functional” clones of the original patient training dataset. Each set of 

preliminary avatars should be pooled into a signal set of data.   

At this point the pooled preliminary avatars may enter final section for 

validation. If the preliminary avatars lack a variable, either a latent parent or 

hidden descendent, the pooled preliminary avatars should enter a final series 

of parameter learning. Here the DAG(s) already developed from section 2 are 

again put to use to derive the necessary parametric models that establish the 

Bayes net. The pooled preliminary avatars can then been used to again 

estimate the conditional probabilities across the Bayes net.  At this stage, only 
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the MLE or MAP-estimators should be used since there are no missing values 

within the dataset. If however there is a similar problem with insufficient 

statistics to estimate the conditional probabilities, a similar 4-step strategy 

should be used to simplify the conditional dependences within the DAG. This 

single Instantiated model can then be used to generate the avatars for section 

four. 

Section 4: Validation of the BNM 

Following the pattern learning as well as the parameter learning, the model is 

nearly complete. In section four, the process enters the validation stage of the 

method. There are many potential ways to validate the BNM. We suggest that 

following data mining best practices, a portion of the data should be held out 

for validation. As noted in sections 2 and 3, each bootstrap should have a 

portion held out for validation. Validation can proceed via aggregating the 

bootstrap portions of the data, or the validation sections can be maintained 

distinct and to allow for k-fold validation testing. If the validation data is 

pooled, there are several methods for validating the model against the pooled 

validation data. Two of the most basic styles of comparisons used to ensure 

that the simulated population is representative of the original data. The first is 

univariate distribution, or the comparative frequency of a single attribute 

between the training data and clinical avatars. The second comparison is the 

bivariate frequency distribution between the training and clinical avatar data 

sets. Variables in which the Bayesian algorithm determined a causal 

connection and are "d-connected" are plotted in frequency histograms. 

Different statistical tests should be used to determine variance between the 
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variables. Z-tests can be used for continuous variables and χ2 contingency 

test or G-test can be used for discrete variables.  

The development of clinical avatars is an iterative process that often requires 

perfecting. If significant variance is found in either the univariate or bivariate 

distribution, the process is refined until there is no significant difference. At 

each section there are several options that may be refined depending on the 

type, size and quality of data used to train the Bayesian model. Of critical 

importance is the use time and care spent in section one, preprocessing the 

data and aggregating domain knowledge. Different styles of data aggregation 

and reduction as well as imputation can dramatically change the structure and 

output of a Bayesian Network Model. If any significant variation is found in the 

first model, the entire structure should be dissolved and the method should be 

restarted from section one.   

If the clinical avatars have demonstrated no significant variance, then at this 

step, the latent or hidden variables should be added to the final instantiated 

model in section 3. The variables that are imposed on the Bayesian network 

model should be associated with some additional evidence that demonstrates 

a probabilistic conditional dependency to a variable(s) existing within the 

model. Thus, when the parameters for the additional variable(s) are imposed 

on the model the estimated conditional probabilities can be imposed on the 

Instantiated model. Once all the desired variables exist within the DAG, and 

the relationships within the Bayes net are associated with conditional 

probabilities, the BNM is complete and ready to produce an unlimited number 

of clinical avatars via Monte Carlo methods.  
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3.2.) Clinical Pharmacology 

Anticoagulation agents do not directly affect established thrombi. In the case 

of occurrence of a thrombus, anticoagulants are usually administered to (a) 

prevent the growth of the existing clots and (b) prevent the movement of the 

clots which might result in serious and possibly fatal thromboembolic 

complications.  

Warfarin or coumadin is an anticoagulation agent which inhibits the synthesis 

of vitamin K-dependent coagulation factors (i.e., Factors II, VII, IX and X). 

Crystalline warfarin sodium (3-(a-acetonylbenzyl)-4-hydroxycoumarin) is a 

racemic mixture of the R- and S-enantiomers. Its empirical formula is C19H15 

NaO4 (Figure 3.8). 

Warfarin is the most commonly prescribed anticoagulant in the world 

(Pirmohamed, 2006). The number of dispensed warfarin prescription has 

reached to 30 millions and over 2 million patients are on warfarin in the United 

States to prevent and for the complications that may occur from 

thromboembolism (e.g., stroke, heart attack) (Wysowski, 2007; Guyatt, 2012). 

Warfarin is an effective medication but also has some clinical shortcomings. 

For instance, a large number of medications and foods interact with it. Many 

Figure 3.8. The structural formula of crystalline warfarin sodium. 
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commonly used medications interact with warfarin. Consequently, it is 

monitored by international normalized ratio (INR) blood tests to ensure safe 

adequate doses are taken (Ansell, 2008). An INR beyond the targeted range 

predisposes to a high risk of bleeding, while an INR below the therapeutic 

target range indicates that the dose of warfarin is insufficient to protect against 

thromboembolic events. 

3.2.1.) Mechanism of Action 

Anticoagulant warfarin inhibits the synthesis of vitamin K dependent 

coagulation factors (e.g., Factors II, VII, IX and X) and also the anticoagulant 

proteins C and S.  

Table 3.1. Half-life of blood factors and proteins involved in coagulation. 

Coagulation Factors and Proteins Half-Life (hour) 

Factor II 60 

Factor VII 4-6 

Factor IX 24 

Factor X 48-72 

Protein C 8 

Protein S 30 

 

Warfarin suppresses the process of coagulation by decreasing the production 

and activities of the coagulation factors by inhibition of the regeneration of 

vitamin K1 epoxide. Vitamin K is an essential cofactor for the gamma-

carboxylation of the coagulation factors.  

3.2.2.) Pharmacokinetics and Pharmacodynamics 

Pharmacodynamics (PD) 

Based on the current evidence, warfarin inhibits C1 subunit of the vitamin K 

epoxide reductase (VKORC1) enzyme resulting in reduction in synthesis of 
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clotting factors as well as vitamin K1 epoxide. This effect is proportional to the 

VKORC1 genotypic profile of patients and also the dosage of the medication. 

“Therapeutic doses of warfarin decrease the total amount of the active form of 

each vitamin K dependent clotting factor made by the liver by approximately 

30% to 50%. An anticoagulation effect generally occurs within 24 hours after 

warfarin administration. However, peak anticoagulant effect may be delayed 

72 to 96 hours. The duration of action of a single dose of racemic warfarin is 2 

to 5 days. The effects of warfarin may become more pronounced as effects of 

daily maintenance doses overlap. This is consistent with the half-lives of the 

affected vitamin K-dependent clotting factors and anticoagulation proteins: 

Factor II - 60 hours, VII - 4 to 6 hours, IX - 24 hours, X - 48 to 72 hours, and 

proteins C and S are approximately 8 hours and 30 hours, respectively” 

(Coumadin, 2011). 

Pharmacokinetics (PK) 

Warfarin is a racemic mixture of the R- and S-enantiomers. The clearance of 

S-enantiomer in the body is much quicker than R-enantiomer. It is also a more 

active anticoagulant component compared to R- enantiomer (i.e., 2 to 5 times 

more active). 

Absorption 

Warfarin’s maximum blood concentration is usually attained within 4 hours 

after oral administration. Warfarin is completely absorbed after oral 

administration. 

Distribution 

Almost all warfarin binds to plasma proteins. According to the warfarin’s label 

(Coumadin, 2011), “using a one compartment model, and assuming complete 
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bioavailability, estimates of the volumes of distribution of R- and S-warfarin 

are similar to each other and to that of the racemate.” 

Metabolism 

According to the warfarin’s label (Coumadin, 2011), “the elimination of 

warfarin is almost entirely by metabolism. Warfarin is stereoselectively 

metabolized by hepatic microsomal enzymes (cytochrome P-450) to inactive 

hydroxylated metabolites (predominant route) and by reductases to reduced 

metabolites (warfarin alcohols). The warfarin alcohols have minimal 

anticoagulant activity. The metabolites are principally excreted into the urine; 

and to a lesser extent into the bile. The metabolites of warfarin that have been 

identified include dehydrowarfarin, two diastereoisomer alcohols, 4'-, 6-, 7-, 8- 

and 10-hydroxywarfarin. The cytochrome P-450 isozymes involved in the 

metabolism of warfarin include 2C9, 2C19, 2C8, 2C18, 1A2, and 3A4. 2C9 is 

likely to be the principal form of human liver P-450 which modulates the in 

vivo anticoagulant activity of warfarin. The S-enantiomer of warfarin is mainly 

metabolized to 7-hydroxywarfarin by CYP2C9, a polymorphic enzyme.” 

CYP2C9 variant alleles have significant effects on the metabolism of warfarin. 

The single or multiple variant alleles of this gene (e.g., *1/*2, *1/*3, *2/*2, 

*2/*3, *3/*3) decrease metabolism of warfarin through lower CYP2C9 

enzymatic 7-hydroxylation of S-warfarin and results in decreased S-warfarin 

clearance (Table 3.2, Yasar, 1999). 

Excretion 

The half-life of R-warfarin ranges from 37 to 89 hours, while that of S-warfarin 

ranges from 21 to 43 hours. More than 90% of the received warfarin is 

detectable in urine and is excreted through urine in the form of metabolites.   
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Table 3.2. Relationship between S-Warfarin Clearance and CYP2C9 

Genotype in Caucasians Patients (Yasar, 1999). 

CYP2C9 Genotype 
Number of 

Study Subjects 

S-Warfarin Clearance/Lean Body Weight  

(mL/min/kg) Mean(SD) 

*1/*1 118 0.065(0.025) 

*1/*2 or *1/*3 59 0.041(0.021) 

*2/*2, *2/*2, or *3/*3 11 0.020(0.011) 

Total 188  

 

Elderly 

According to different dosing guidelines (e.g., AGSCP Guidelines, 2000), the 

use of warfarin in older people requires special consideration as their PT/INR 

response to the anticoagulant effects of warfarin is greater than expected. It is 

unknown why they are more sensitive to warfarin. Therefore, as patient age 

increases, a lower dose of warfarin is usually required to reach the therapeutic 

INR level. 

Asians 

Asian patients may require lower initiation and maintenance doses of warfarin. 

In a number of studies, it has been observed that Chinese patients require 

lower warfarin dosages to achieve an INR of 2-2.5 (Veenstra, 2005). Some 

studies also have shown that the most important determinant of warfarin 

dosage in Chinese patients is age (e.g., Veenstra, 2005). 

Renal Dysfunction 

Given that renal clearance has minor effect body’s response to warfarin, there 

is no need to make dose adjustment if a patient had renal failure. 

Hepatic Dysfunction 

Liver has an important role in the metabolism of warfarin. Accordingly, any 

hepatic dysfunction, which usually results in impairment in the synthesis of 
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clotting factors as well as decreased warfarin metabolism, can enhance body 

response to warfarin. 

3.2.3.) Pharmacogenomics 

In 2005, Sanderson team reported the results of a meta-analysis of 9 studies 

(2775 patients: 99% Caucasian) performed to investigate the CYP2C9 gene 

variants-associated clinical outcomes in warfarin-treated patients (Sanderson, 

2005). In this meta-analysis, some of the qualified included studies assessed 

bleeding risks and the rest of the studies assessed daily dose requirements. 

The analysis suggested a higher risk of bleeding risk and lower mean daily 

dose of warfarin for patients with either the CYP2C9*2 or CYP2C9*3 alleles.  

Patients with CYP2C9*2 and CYP2C9*3 alleles have lower mean daily 

warfarin doses and a greater risk of bleeding, 17% and 37% less than the 

mean daily dose for patients homozygous for the CYP2C9*1, respectively.  

In a prospective study of 219 Swedish patients under warfarin treatment who 

were stratified by CYP2C9 genotype, Lindh et al. discovered that the risk of 

overanticoagulation (i.e., achieving INR >3) during the first 2 weeks of 

warfarin therapy was two times higher for the patients with the polymorphic 

variant alleles (CYP2C9*2 and CYP2C9*3) compared to patients with wild-

type CYP2C9 (Lindh, 2005). 

Many studies have found that patients with some of the VKORC1 gene’s 

single nucleotide polymorphisms (e.g., -1639G>A, rs9923231) require lower 

initial doses of warfarin. Gene VKORC1 regulates the synthesis of the vitamin 

K–epoxide reductase (VKOR) protein which is the target enzyme of warfarin 

(Rost, 2004; Li, 2004). The -1639G>A polymorphism alters the biding sites of 

the VKOR which results in a reduction in protein expression (Rieder, 2005; 
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Yuan 2005). A large number studies have discovered that the variants of 

VKORC1 and CYP2C9 genes are individually responsible for 35% to 50% of 

the variable dose response to warfarin. For example, Wadelius team reported 

an association between VKORC1 gene variations and lower required dose of 

warfarin. In this study with a study cohort of 201 white patients under warfarin, 

they attributed about 30% and 40% of the variance in warfarin dose to 

variations in the VKORC1 gene and variations in VKORC1 and CYP2C9 

genes combined, respectively (Wadelius, 2005). Several multivariate analyses 

have shown that the addition of patient characteristics, such as age, gender, 

height, weight and other medications, to CYP2C9 and VKORC1 accounts for 

approximately 50-60% of warfarin dose variability. 

3.2.4.) Accounting for Adverse Reactions 

Oral anticoagulants, most commonly warfarin, reduce risk to thrombosis and 

treat conditions that might lead to stroke, pulmonary embolism, deep vein 

thrombosis or other blood clotting related disease. The impact and value of 

anticoagulation medication in the U.S. is dramatic. For example, stroke is the 

third leading cause of death in the U.S. with over 140,000 deaths annually.  

The majority of stroke incidences are due to ischemia (87%) or transient 

ischemic attack (TIA, ~5-10%) and are typically managed by the use of 

anticoagulation agents such as warfarin, dabigatran, and clopidogrel.  

Whatever the patient’s disease or condition leading to a prescription of an 

anticoagulation agent, selecting the best combination of drug and treatment 

protocol is complicated by the individual differences in anticoagulation 

medication response (e.g. >20-fold difference for warfarin) due to genetics, 

physiology, and compliance. Consequently, given this characteristic, any 
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small increase or decrease in medication dosage might increase the risks of 

bleeding or thromboembolic events, respectively (Ansell 2008). In practice, 

providers use a combination of experience, scientific evidence and clinical trial 

results to develop anticoagulation “best practice” treatment plans designed to 

roughly minimize the patient-to-patient response variability and risks across 

the provider’s patient population. However, the high degree of patient 

heterogeneity causes variations in individual patient response to these “best 

practice” drug-protocol approaches. Another factor that makes the 

management of warfarin more complex is its interactions with many other 

medications and foods. Therefore, warfarin is among the medications with a 

high rate of associated adverse reactions (Ansell, 2008). 

According to the 2010 FDA-approved warfarin (Coumadin) product label 

(Coumadin, 2011), there are a wide range of adverse reactions associated 

with warfarin: 

- Fatal or nonfatal bleeding from any tissue or organ. Depending on the 

severity and location of the bleeding, the complications may present as 

paralysis; paresthesia; headache, chest, abdomen, joint, muscle or other pain; 

dizziness; shortness of breath, difficult breathing or swallowing; unexplained 

swelling; weakness; hypotension; or unexplained shock. One important point 

with regard to bleeding during anticoagulation therapy is that it does not 

always correlate with PT/INR. In this case, the bleeding might have been 

resulted from other disorders such as tumors and ulcers. 

- Necrosis of skin and other tissues. 

- Infrequent or rare adverse reactions: hypersensitivity/allergic reactions, 

including anaphylactic reactions, systemic cholesterol microembolization, 
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purple toes syndrome, hepatitis, cholestatic hepatic injury, jaundice, elevated 

liver enzymes, hypotension, vasculitis, edema, anemia, pallor, fever, rash, 

dermatitis, including bullous eruptions, urticaria, angina syndrome, chest pain, 

abdominal pain including cramping, flatulence/bloating, fatigue, lethargy, 

malaise, asthenia, nausea, vomiting, diarrhea, pain, headache, dizziness, loss 

of consciousness, syncope, coma, taste perversion, pruritus, alopecia, cold 

intolerance, paresthesia including feeling cold and chills, tracheal or 

tracheobronchial calcification, and priapism. 

3.2.5.) Clinical Protocols 

The narrow therapeutic range and wide interindividual variability in warfarin 

therapeutic dose (such as 4.5–77 mg/week (Wadelius, 2004)) make 

anticoagulation management challenging and anticoagulation response 

unpredictable. Current clinical best practice relies primarily on empirical 

dosing. Accordingly, most patients usually start taking a fixed dose each day 

(such as 5 mg/day) during the “initiation phase” of warfarin on the basis of 

population averages, regardless of clinical and genetic factors (Garcia, 2005). 

Then, based on the INR results, the dose is titrated. This empirical clinical 

practice approach requires frequent changes in the dose of warfarin in 

response to out-of-therapeutic range INRs and to avoid adverse effects and 

maintain therapeutic efficacy. To address this challenge, mainly before the 

completion of the Human Genome Project, a number of dosing algorithms that 

included clinical variables were developed. Since the successful completion of 

the project and in the light of discoveries of polymorphisms in cytochrome 

P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex 1 (VKORC1) 

which jointly account for about 40-50% of the inter-individual variability in dose 
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requirements, a large number of pharmacogenetic-based dosing algorithms 

have been also developed. However, the potential benefit of these dosing 

algorithms in terms of their safety and clinical utility has not been adequately 

investigated in randomized settings. 

3.2.6.) Dosage and Administration 

The dosage and administration of warfarin must be individualized for each 

patient. The warfarin dose management is an iterative process which starts 

with administering an initial dose and then is followed with dose adjustments 

based on the patient’s INR response to the medication (Figure 3.9).  

 

As discussed earlier, many factors cause warfarin dose variability such as 

clinical factors including age, race, body weight, sex, concomitant 

medications, comorbidities and diet and genetic factors including CYP2C9 

and VKORC1 genotypes. To initiate a warfarin dose, there are different 

options such as: 

- According to FDA, if the patient’s genotypes are known, we can use the 

following table (Table 3.3) to select the initial dose. If the genotypes are not 

available, the initial dose of warfarin is usually 2 to 5 mg/day. This dose 

should be modified based on consideration of patient-specific clinical factors. 

 

Figure 3.9. The iterative process of dosing and adjusting warfarin 
dose until achieving maintenance dose and INR in therapeutic range. 
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Table 3.3. Recommended daily warfarin doses (mg/day) to achieve a 

therapeutic INR based on CYP2C9 and VKORC1 genotype using the warfarin 

label approved by the US Food and Drug Administration (Johnson, 2011). 

VKORC1 Genotype  

(-1639G>A, rs9923231) 

CYP2C9 Genotype 

*1/*1 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3 

GG 5-7 5-7 3-4 3-4 3-4 0.5-2 

GA 5-7 3-4 3-4 3-4 0.5-2 0.5-2 

AA 3-4 3-4 0.5-2 0.5-2 0.5-2 0.5-2 

 

- Use any available clinical or PG-based dosing algorithms to calculate 

appropriate initial dose or 

- Use the standard fixed-dose practice (5mg/day, Loading Dose: 10 mg/day). 

After initiating warfarin, the subsequent dosage adjustments must be made 

based on INR results until achieving a maintenance dose and an INR in 

therapeutic range.  

3.2.7.) PK/PD Modeling and Simulation (INR Prediction) 

In order to model the pharmacodynamics (PD) and pharmacokinetics (PK) of 

a medication, the relationship between drug dose, plasma concentration, 

biophase concentration (pharmacokinetics), and drug effect or side-effects 

(pharmacodynamics) is characterized, and relevant patient covariates are 

included in the model (Figure 3.10). Modeling of pharmacokinetic and 

pharmacodynamic can be used to make predictions about the “temporal 

profile of the drug concentration” and “its effect” which ultimately helps select 

PK 
Model 

Concentration Effect Drug 

PD 

Model 

Figure 3.10. A schema depicting the general relationship of pharmacokinetic 

(PK) and pharmacodynamic (PD) models used in clinical pharmacology. 
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appropriate dosing protocol and “optimal delivery profile” (Yan, 2013). 

A number of studies have been undertaken to model PK and PD of warfarin. 

The aim of most of these studies have been to develop population models to 

describe the PKs of both S- and R-warfarin and the PK-PD relationship 

between warfarin exposure/concentrations and anticoagulant response (i.e., 

INR), including identification of important predictors for a priori dose 

individualization of warfarin. 

In the next following section before reviewing one of the warfarin’s PK/PD 

models, We are going to briefly go over some fundamental concepts of PK 

and PD.  

Pharmacokinetic Models 

Pharmacokinetics (PK) studies the relationship between drug concentration 

and its effect on the body. PK principles are often used to reduce toxicity and 

improve efficacy during patient care. The suite of tools used in PK studies are 

mathematical models, used to quantify the processes of drug Absorption, 

Distribution, Metabolism, and Excretion (ADME) in the body. Rates of 

reactions and compartmental architecture are two important properties of PK 

models that control how these ADME processes are modeled. 

Rates of Reaction 

The ADME processes can be modeled as either zero-order or first-order 

reactions. The order of the reaction is the rate of change of a variable over 

time. Consider an example where drug A is modeled. In a zero-order reaction, 

the rate of change of drug A would be constant (see equation A), where k* is a 

zero-order rate constant. Here the rate of change of A is independent of the 

concentration of A. In a first-order reaction, the rate of change of drug A is 
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proportional to A (see equation B), where k is a first-order rate constant 

(Dhillon, 2006). 

DE
DF

=  −H∗     (A) 

DE
DF

=  −HJ     (B) 

The drug’s rate of reaction has important clinical implications. Drugs that have 

first-order rate of elimination do not accumulate within the body because as 

concentration increases so does the elimination rate. In contrast, drugs with 

zero-order rates of elimination will accumulate with continued administration. 

However, a first-order reaction can be altered to appear as a zero-order 

reaction in such situations as overdosing. At clinical dosages though, most 

drugs are first-order reactions, with a few zero-order examples such as 

phenytoin and high-dose salicylates. 

Compartmental Models 

The compartmental architecture of a PK model determines the fate of a drug 

after it enters the body. Although the compartments are hypothetical 

structures to model the body, they do have underlying biological reasoning to 

describe how a drug is processed. In reality, drug concentration and kinetics 

will vary with the type of tissue (e.g. brain versus muscle). Therefore, to 

accommodate different modeling scenarios there are several types of 

compartmental architectures. 

One-compartment Model 

The one-compartment model represents the body with one compartment and 

makes the simple assumption that once the drug is introduced it is 
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instantaneously and homogeneously distributed throughout the body (Figure 

3.11, Dhillon, 2006). The drug concentration is monophasic and decreases 

exponentially with time, or linearly if the log of drug concentration is taken 

(Figure 3.12, Dhillon, 2006). 

 

Two-compartment Model 

The two-compartment models decompose the body into two tissues types: the 

central component represents highly perfuse tissue (e.g. heart, kidneys and 

lung) and the peripheral component represents tissues that are less perfuse 

(e.g. skin, muscle and fat). The two-compartment model allows more complex 

drug concentration dynamics than the one-compartment model. Upon 

administration, the drug’s concentration has a two phases: it is initially highly 

concentrated in the central component but rapidly declines as it distributes to 

the peripheral component. After reaching equilibrium between the two 

Figure 3.11. One-compartment model. ka = absorption rate constant, k = 
elimination rate constant. Adopted from (Dhillon, 2006). 

Figure 3.12. (a) Plasma concentration (Cp) versus time. (b) 
Time profile of a one-compartment model showing log Cp 

versus time. Adopted from (Dhillon, 2006). 
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compartments, the drug then declines more slowly as it is eliminated from the 

central compartment. Hence, the drug concentration over time shows a 

biphasic response (Figure 3.13, Dhillon, 2006). 

Multi-compartment Model 

The multi-compartment models allow even more complex drug concentration 

dynamics. With higher number of compartments there will be more phases in 

the drug concentration over time (Figure 3.14). 

Pharmacodynamics 

Pharmacodynamics studies the drug’s effect on the body by describing how 

the drug affects local physiological and biochemical processes in the body. At 

the core of the pharmacodynamics approach is the reaction equation (see 

Figure 3.13. (a) Plasma concentration versus time profile of a drug 
showing a two compartment model. (b) Time profile of a two-

compartment model showing log Cp versus time. Adopted from 
(Dhillon, 2006). 

Figure 3.14. (a) Plasma concentration versus time profile of a drug 
showing multi-compartment model. (b) Time profile of a multi-
compartment model showing log Cp versus time. Adopted from 

(Dhillon, 2006). 



www.manaraa.com

104 

 

 

 

equation 1) describing the relationship between the drug (D), receptor (R), 

drug-receptor complex (DR), and the effect (E), where kon and koff are the rate 

of drug and receptor association and the rate the complex dissociation, 

respectively. Of course more complex kinetics is possible, but even with such 

a simple expression some very useful clinical information can be gleaned. The 

responsibility of researchers and clinicians is then to tailor the mathematical 

model describing the reaction equation to their pharmacodynamics scenario 

(Dhillon, 2006).  

The expression in equation C has several clinically relevant properties.  

* + K 
LMNN
OPPPQRRRRRRRRRS
AMT  *K AU→  W                      ��� 

The receptor dissociation rate constant (kD) describes the equilibrium rate 

between the rate of kon and koff (equation D). This principal demonstrates, for 

example, that if [D] is very high then the receptors are saturated, and no 

significant increase in [E] can take place. The idea that there can be a limit to 

the amount of effect is quantified with Emax, the maximal effect for all drugs. 

There is another, related value denoted EC50, which quantifies the 

concentration at which E is 50% of Emax. These constants are important for 

determining the relationship between drug concentration and effect, and how 

pharmacodynamics models are put into use (Dhillon, 2006). 

XYZZ
XY�

= XD = =*>=K>
=*K>                       �*� 

Different pharmacodynamics scenarios dictate the mathematical form 

describing equation C. Effect can be sigmoidal or linearly related to drug 

concentration depending on modeling assumptions. The most general 

equation is shown in equation E, a sigmoidal relationship (Dhillon, 2006).  



www.manaraa.com

105 

 

 

 

W =  W[\/ .  ��

�W�^_� +  ���                      �W� 

C represents the drug concentration, and n is the “Hill” coefficient, determining 

the “steepness” of the concentration-effect relationship. Very high values of n 

(n>5) can make the relationship so steep as to effectively make the drug have 

a binary effect (i.e. the effect is present or not). Equation F represents the 

case of n=1 (Dhillon, 2006).  

W =  W[\/ . �
�W�^_ + ��                      �`� 

Equation G simplifies equation 3 to a linear relationship. This may be useful in 

situations where C is much less than EC50 and the range of clinical dosage is 

very narrow (Dhillon, 2006).  

W ≈  W[\/
W�^_

. � = bcd��. �                      �B� 

The log of equation G can be taken to yield equation H (Dhillon, 2006).  

W = bcd��. log ���                      �e� 

A model describing a log-linear relationship can be useful in situations where 

there is high intrinsic variability, but the drawbacks of such models include the 

inability to represent the case where C is zero such as in placebo studies. The 

fundamental concentration-effect relationships are outlined in Figure 3.15. 

Continuous PD models 

PD models can be either continuous or categorical, although the focus here is 

on continuous models. The type of model used depends on the nature of the 

data, such as whether the data is continuous (e.g., blood pressure and 

weight), categorical (e.g., grade of adverse event), and the frequency of 

measurement. The different concentration-effect relationships discussed 
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 above provide crucial flexibility for different pharmacodynamics scenarios, but 

more building blocks are needed to accommodate the diverse physiological 

context the concentration-effect dynamics take place. Figure 3.16 outlines five 

common types of continuous PD models in use. 

 

 

 

 

 

Figure 3.15. Fundamental concentration-effect relationships. (a) The Emax 
concentration-effect relationship that arises from receptor theory for the binding 

of a single drug to a single receptor. Fifty percent of the maximum effect is 
achieved at the EC50 concentration. (b) The same relationship over a much 

wider log-concentration scale. (c) The sigmoid Emax concentration-effect 
relationship that arises from receptor theory when there is allosteric inhibition or 

simulation of binding. The “Hill factor” n controls the steepness of the middle 
part of the curve. (d) A linear concentration-effect relationship that is a 

semiempirical but sometimes useful substitute for an Emax relationship when the 
range of concentration is relatively small and the drug effect is well below Emax. 

Adopted from (Upton, 2014). 
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Hamberg’s PK/PD Model  

The aim of the Hamberg’s study (Hamberg, 2007) was to characterize the 

Figure 3.16. Representative continuous pharmacodynamic models. (a) A 
direct response model where effect is driven by the plasma drug 

concentration. (b) An effect compartment model where effect is driven by 
the effect compartment drug concentration, which is delayed relative to 

the plasma concentration by a first-order rate constant ke0. (c) A turnover 
model where drug effect is a balance between an apparent production 
rate (kin) and an apparent removal rate (kout). Drug affects the net effect 
by altering kin or (kout). (d) A transit compartment model, where the drug 
effect is at the end of chain of processes and drug action is on the first 
process. (e) A tolerance compartment model, where the drug effect is 

described by an effect compartment and the development of tolerance is 
described by a slower inhibitory compartment that reduces the net drug 

effect with time. Adopted from (Upton, 2014). 

a 

b 

d 

c 

e 
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relationship between warfarin concentrations and international normalized 

ratio (INR) response and to identify predictors important for dose 

individualization. S- and R-warfarin concentrations, INR, and CYP2C9 and 

VKORC1 genotypes from 150 patients were used to develop a population 

pharmacokinetic/pharmacodynamic model in NONMEM (Beal, 1994). The 

anticoagulant response was best described by an inhibitory EMAX model, 

with S-warfarin concentration as the only exposure predictor for response. 

Delay between exposure and response was accounted for by a transit 

compartment model with two parallel transit compartment chains (Figure 

3.17).  

 

They also found a two-compartment PK model with first-order input and first 

order elimination to appropriately characterize the disposition of S-warfarin 

(Figure 3.18). 

Figure 3.17. A two-chain transit compartment PD model used by Hamberg et 
al. to describe the INR response to warfarin therapy. Mean Transit Times 

(MTTs), Apparent clearance of S-warfarin [CLs], EC50 (concentration 
resulting in 50% of Emax), λ is the sigmoidisity factor, describing the 

steepness of the concentration–effect relationship, A1–7 indicate 
compartment amounts, A1–6 are the compartment amounts in the "long" 
transit chain, whereas A7 is the compartment amount in the "short" transit 

chain (Hamberg, 2007).  
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In their study, CYP2C9 genotype and age were identified as predictors for S-

warfarin clearance, and VKORC1 genotype as a predictor for warfarin 

sensitivity. Accordingly they have modeled the ith individual’s jth observed 

INR value (INRij) according to:  

INRij=BASEi+INRMAX(1-A6*A7)λ 

BASEi is the ith individuals observed baseline INR value whose predictive 

covariates are Age, CYP2C9 and VKORC1, INRMAX is the maximum INR 

increase from baseline, λ is the sigmoidisity factor, describing the steepness 

of the concentration - effect relationship, A1–7 indicate compartment 

amounts, A1–6 are the compartment amounts in the "long" transit chain, 

whereas A7 is the compartment amount in the "short" transit chain (Hamberg, 

2007). According to Hamberg, predicted INR curves show significant steady-

state differences across patients with different covariates. They indicated that 

Figure 3.18. Observed time profiles of S-warfarin 
concentrations following administration of a single 10 mg 

warfarin dose and at steady state (Hamberg, 2007).  
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it was not possible to anticipate these differences based on just early INR 

assessments. 

 The following table (Table 3.4) depicts warfarin doses predicted using 

Hamberg’s model for 54 individuals with different set of predictive covariates 

of CYP2C9 and VKORC1 genotypes for three age groups of 50, 70, and 90 

years old. The desired target INR in this effort was 2.5. As an example, the 

predictions show the significant difference (20 fold) between a priori doses 

(9.08 mg/day vs. 0.47 mg/day) for two individual with different combination of 

predictive covariates (“A 50-year-old patient with CYP2C9 *1/*1 and VKORC1 

GG genotypes” vs. “A 90-year-old patient with CYP2C9 *3/*3 and VKORC1 

AA genotypes”). 

Table 3.4. Predicted daily warfarin dose with target INR of 2.5 in three groups 

of patients with different set of predictive covariates (i.e., Age, CYP2C9 and 

VKORC1 genotypes) (Hamberg, 2007) 

 

The authors indicated that the influence of warfarin therapy on INR response 

of the R warfarin was not statistically significant. Therefore, the model only 

considered the PK/PD effects of S-warfarin. They concluded that it is 
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important to account for CYP2C9 and VKORC1 genotypes and age to 

improve a priori and a posteriori individualization of warfarin therapy. 

PK-PD modeling for INR response in our in silico framework 

We have adapted the PK-PD model from Hamberg (Hamberg, 2007) to 

predict the INR response for each clinical avatar at a given warfarin dose. In 

order the make the INR model work within our framework, we ported the code 

from NONMEM to R. According to the model, we only considered the PK-PD 

effects of S-warfarin. We modeled the PK effects using a two-compartment 

model with first order input and first order elimination and the PD effects using 

a two-chain transit compartment model. Due to limitations on the original 

model it has been necessary to make assumptions about the covariance of 

the variables because the complete covariance matrix was not provided. We 

have used a random log normal distribution to estimate the variability of the 

clearance rate, the volume in the central compartment, and the volume in the 

peripheral compartment and restricted the range to be within physiological 

ranges. 

To model the accumulation of warfarin concentration over time (assuming 

daily doses), we have used the principle of superposition. Superpositioning 

does not require assumptions regarding a PK model or absorption kinetics, 

but instead assumes each dose of the drug acts independently and that the 

rate and extent of absorption and average systemic clearance are the same 

for each dosing interval and that linear PK apply (Gibaldi, 1982). We create a 

table of warfarin concentrations over time and summed across the rows at 24-

hour time intervals to predict the amount of warfarin remaining in the system. 
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3.3.) Design of Comparative Effectiveness and Clinical 

Trial Studies 

A large number of the definitions have been offered for Comparative 

Effectiveness Research (CER). According to the Center for Clinical and 

Translational Science of Ohio State University, CER is “a field of study that 

utilizes data generation (new studies) and synthesis (comparisons of existing 

studies) to provide evidence identifying best practices and policies related to 

improving health care.” CER studies are generally conducted after 

randomized controlled trials (RCTs) (CER Resources, 2014). The focus of 

most of RCTs has been to study the efficacy of treatments under ideal 

conditions. On the other side, CER studies mostly focus on effectiveness by 

comparing one or more treatments, tools, procedures or medications to 

determine what works best for which individuals or patient populations under 

real world situations. CER studies have gained significant attention in clinical 

medicine in last few years since the Patient Protection and Affordable Care 

Act (PPACA, 2010) established Patient-Centered Comparative Effectiveness 

Research (PC-CER) as a US national medical research priority. Although this 

law has provided tremendous resources for CER studies to improve the 

evidence base that supports the use of genomic information to improve 

healthcare, however, efforts to translate critical genomic discoveries require 

prohibitively expensive clinical trial and clinical study validation which are 

severely hindered by regulatory, technical and validation barriers not easily 

conducted using current clinical-research or clinical enterprise environments. 

According to Khoury (2007), the reality is that “a small proportion of human 

genomics research has progressed from gene discovery to an evidence-
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based health application that has been effectively integrated into practice and 

has demonstrated health impact.” Based on Tunis (2003), to address this 

situation and make the clinical trials’ results more efficient and generalizable, 

there is a need for CER studies in which we (1) select clinically relevant 

alternative interventions to compare, (2) include a diverse population of study 

participants, (3) recruit participants from heterogeneous practice settings, (4) 

collect data on a broad range of health outcomes, and (5) pay special 

attention to the study time frame. 

One "poster" example of this translational complexity and need for a new 

approach to predicting a population wide treatment plan is the case of 

"optimal" warfarin dosing (~30 million US prescriptions/year) which 

demonstrates highly variable individual risks to serious under and over dosing 

adverse responses (thrombotic or bleeding event) and rapidly increasing 

health care costs associated with warfarin complications estimated at over $1 

billion/year (McWilliam, 2006). The clinical potential of genetics has driven 

significant scientific and clinical efforts to study the warfarin dosing question. 

Key scientific findings have demonstrated significant relationship between 

genotypes of VKORC1 and CYP2C9 and the metabolism of warfarin (e.g. 

Rieder, 2005). Consequently, the genotype-dosing relationship of warfarin as 

one of the emerging collection of pharmacogenomic results has led to a large 

number of clinical trials. As a result, various warfarin PG-based dosing 

algorithms and protocols have been offered and many outcome metrics (e.g, 

INR and TTR) have been tested in different related studies. However, given 

that anticoagulation therapy is usually a long term treatment and the fact that 

clinical utility of the PG-based warfarin algorithms has been tested only in 
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small study populations and highly constrained conditions (Anderson, 2007; 

Caraco, 2008; Burmester, 2011; Wang 2012), conducting longitudinal CER 

studies including multiple dosing protocols are still necessary to evaluate the 

ultimate impact of the available warfarin dosing algorithms on practice and 

different populations (i.e., external validity). These studies could address 

questions such as how and under which conditions PG-based dosing 

algorithms could perform well in certain populations for whom PG-based 

algorithms have shown less effective performance compared to other 

populations (Schelleman, 2008; Gage, 2008; Cavallari, 2012). 

3.3.1.) Longitudinal Studies 

Long-term warfarin anticoagulation is commonly used to prevent 

thromboembolism in patients with medical conditions such as atrial fibrillation 

and venous thromboembolism (e.g., deep vein thrombosis (DVT) or 

pulmonary embolism), or when treating patients with mechanical heart valves 

(MHVs) (Daniels, 2005). Long-term use of warfarin along with its narrow 

therapeutic index and a high risk/benefit ratio necessitate close and long-term 

monitoring. Through monitoring, different temporal quality measures are 

examined: the patterns of warfarin use in terms of discontinuations and 

interruptions, quality of anticoagulation therapy using primary anticoagulation 

outcome metrics (e.g., INR and TTR) as well as the relationship of these 

patterns with subsequent stroke and bleeding events as secondary and 

clinical outcomes. To study these patterns, in addition to prospective clinical 

trials, the secondary use of EMR data provides a great opportunity to design 

and conduct observational longitudinal studies or retrospective longitudinal 

cohort studies. Using treatment data from longitudinal studies, we can 
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estimate quantitative and temporal parameters associated with the quality of 

anticoagulation therapy. It helps to individualize doses and consistent and 

efficient dose adjustment practices using PG-based or non PG-based dosing 

protocols. This kind of studies could be conducted not only to study the 

effectiveness of different PG-based dosing algorithms for initiating warfarin 

doses but also they could be done to address questions such as how long 

genotype remains a significant predictor of warfarin dose.  

Our in silico translational research framework could take advantage of 

longitudinal EMR data of warfarin patients to conduct the CER studies that 

could address the effectiveness of different dosing algorithms/protocols over 

the period or treatment. It is discussed in more detail in chapters 5 and 6. 

3.3.2.) INR and TTR Estimation 

Percent Time in Therapeutic Range of INR (TTR) for each cohort of patients 

can be determined using any of the following three methodologies (Table 3.5):  

1- The fraction of INR's in range (Loeliger, 1985). The fraction of INR's in 

range is calculated by taking the number of INR's within target range for all 

patients divided by the total number of INR's during selected time interval. 

2- The Rosendaal linear interpolation method (Rosendaal, 1993). The 

Rosendaal linear interpolation methodology assumes a linear relationship 

exists between two INR values and allows one to allocate a specific INR value 

to each day for each patient. An average time in range for all patients was 

determined. The Rosendaal method has demonstrated to be valid and 

reproducible when the level of missing INR values is not high (e.g., ~20%) 

(Hutten, 1999). 
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3- The cross-section-of-the-files methodology (Ansell, 2004). The method 

takes each patient whose INR value is in range at one point in time (the INR 

value that was closet the midpoint of the selected interval ± 7 days) divided by 

the total number of INR's done on all patients at that point in time. In other 

words, it assesses all patients being managed at one point in time by taking 

the total of those whose INR is in range and dividing it by the total number of 

patients who had an INR at that point in time. 

Table 3.5. Advantages and Disadvantages of Methods to Calculate Time-in-

Therapeutic Range (TTR) (Schmitt, 2003). 

Methodology Advantage Disadvantage 

Fraction on INRs 

Simple to calculate 

Requires only one INR 

value per patient in clinic 

population 

Not influenced by extent of 

INR out-of-range 

More frequent testing in 

unstable patients may 

bias overall results (will 

under-estimate TTR of 

group) 

Does not take into 

account days within 

target range 

Does not consider 

individual patients 

Cross-section-of-

the-files 

Simple to calculate 

Considers individual 

patients 

Not influenced by extent of 

INR out-of-range 

Does not take into 

account actual days 

within target range 

Only considers one 

point in time 

Rosendaal linear 

interpolation 

Takes into account actual 

days in target range 

Allows one to calculate 

INR specific incidence 

rates of adverse events 

Calculation more 

difficult 

Makes assumptions 

about INR between 

actual tests 

Does not consider 

individual patients 

Extreme out-of-range 

INR values may bias 

overall results 
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3.3.3.) Multiple Protocol Studies 

Clinical trials have produced a host of treatment protocols for anticlotting 

medications such as warfarin, where over 40 protocols were published in the 

past 30 years. In practice, providers use a combination of experience, 

scientific evidence and clinical trial results to develop anticoagulation “best 

practice” treatment plans designed to roughly minimize the patient-to-patient 

response variability and risks across the practice’s patient population. 

However, the high degree of patient heterogeneity (based on factors such as 

race, age, individual medical data, family history and genetics) causes 

variations in individual patient response to these “best practice” drug-protocol 

approaches. The sheer number of treatment options and risk factors preclude 

the full array of clinical trials required to test all combinations of patients and 

drug-treatment protocol options. In short, no practical approach to identify the 

optimal anticoagulation treatment plan exists for large heterogeneous patient 

populations that accounts for individual risk factors; drug and protocol options; 

and achieves minimal risk to adverse events such as stroke. Current access 

to large comprehensive electronic medical records (EMR) covering diverse 

patient populations, coupled with novel modeling and computational 

simulations provides an unprecedented opportunity to conduct in silico 

identification and validation of optimal treatment strategies. 

To address such a challenge, our in Silico WiAD PCOR CER Framework is 

used to produce large, representative synthetic patient populations that can 

be used to conduct replicated clinical simulations testing and comparing 

multiple anticoagulation medication-protocol options. 
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3.4.) Model and Simulation Requirements 

In our adjustable modular anticoagulation therapy simulation framework 

(Figure 3.19), we use a highly adaptable modeling and software application 

development paradigm to create models of actual patient populations and 

then use those models to produce simulated patient populations (“clinical 

avatar” populations) and conduct simulations to predict the clinical validity and 

efficacy of genetic tests and algorithms applied to each clinical avatar. The 

mathematical representation of statistically accurate clinical avatar 

populations are used to simulate clinical data, warfarin dose (initial and 

adjusted doses) and INR response over desired period of time for 

anticoagulation treatment courses using different patient populations and a 

collection of pharmacogenetic and non-pharmacogenetic dosing algorithms. 

Different outcome metrics are calculated and examined to determine which 

Figure 3.19. Adjustable Modular Anticoagulation Therapy Simulation 
Framework. 
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algorithm provides the evidence supporting the best clinical outcome for each 

patient population.  

Next, we will use Aurora Health Care’s patient-based electronic medical 

record to assemble hospital, city, county-wide and regional patient 

populations. We will use the modeling framework to conduct 90 day 

simulations on these hospital patient populations and test the predictions of 

over and under dosed patients against data provided by Aurora Health Care. 

In addition to the clinical trial simulations, we will also simulate Milwaukee 

City, County and South East Wisconsin populations and apply standard health 

disparity and geographical analysis to predict the likelihood of higher 

incidences of adverse events in geographically and racially diverse sub 

populations. We will test these predictions against Aurora’s stratified patient 

population to determine accuracy of the population-wide simulations. 

Our approach to generate clinical avatars follows the standard applied 

mathematical modeling approach (explained in detail in section 3.1.2.): 

Analyze and characterize the data; Formulate a phenomenological model that 

‘fits’ the data; Test the performance of the model against a sub-collection of 

data; Evaluate the accuracy of the model; and Adjust the model based on the 

accuracy (or lack thereof) (Blue box in Figure 3.20).  
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3.4.1.) Patient Populations 

Enormous number of clinical trials have been conducted to test the value of 

genotyping on warfarin dosing and treatment. In fact, 364 clinical trials have 

been or are being conducted to test the accuracy of previous dosing 

algorithms, construct new dosing algorithms, or test the value of genetic 

variants in warfarin dosing (clinicaltrials.gov). In those costly clinical trials, 

tens of thousands of patients have been or are being recruited. The variety of 

trials, objectives, subject populations and results demonstrate a complex 

problem that has no obvious solution so far (~100 warfarin trials are still open 

as of June 1, 2014).  

As mentioned, more than 40 warfarin prediction algorithms that use patient 

specific data to predict therapeutic warfarin dosing have been published in the 

last three decades. This collection of algorithms contain a number of 

Figure 3.20. The Applied mathematical modeling schemata to 
generate clinical avatars consists of an iterative process of 

model development, testing, validation, refinement and repeat. 
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physiological, genetic, clinical lab, and clinical care variables used in one or 

more algorithms. We have recorded each variable’s nomenclature, data 

constraints, range of values, and data type (Table 3.6). It is a source of 

defining which variable (clinical, genetic, personal or family) should be 

included in the algorithms.  

Table 3.6. General characteristics of the variables used in most of the warfarin 
dosing algorithms. 

Field Units Description Format Constraint Example 

Race n/a race Controlled 

Dictionary 

{White, African-

American, Native-

American, Asian, 

Pacific-Islander, 

Other, Unknown} 

Other 

Age years age in years Integer 13 <= x <= 94 25 

Gender n/a gender Controlled 

Dictionary 

{M, F} M 

Height in Height in 

inches 

Integer 56 <= x < = 82 65 

Weight lbs Weight in 

pounds 

Integer 100 <= x < = 308 165 

BSA m^2 Body Surface 

Area 

Real 

Number 

1.3 <= x <= 2.8 1.6 

CYP2C9 n/a CYP2C9 

genotype 

Controlled 

Dictionary 

{*1/*1,*1/*2,*1/*3,

*2/*2,*2/*3,*3/*3} 

*1/*1 

VKORC1 n/a VKORC1 

genotype 

Controlled 

Dictionary 

{A/A, A/B, B/B} A/A 

CYP2C9*2 n/a CYP2C9*2 

genotype 

Controlled 

Dictionary 

{C/C, C/T, T/T} C/T 

CYP2C9*3 n/a CYP2C9*3 

genotype 

Controlled 

Dictionary 

{A/A, A/C, C/C} A/C 

VKORC1 

(1173) 

n/a VKORC1(1173

) genotype 

Controlled 

Dictionary 

{C/C, C/T, T/T} C/T 

VKORC1 n/a VKORC1(- Controlled {G/G, G/A, A/A} G/A 



www.manaraa.com

122 

 

 

 

(-1639) 1639) 

genotype 

Dictionary 

DVT n/a Warfarin usage 

indicated for 

DVT/PE or not 

Controlled 

Dictionary 

{Y, N} Y 

Smoker n/a Smokes or not Controlled 

Dictionary 

{Y, N} Y 

Target INR n/a Desired INR Real 

Number 

x = 2.5 2.5 

Amiodarone n/a Amiodarone 

use or not 

Controlled 

Dictionary 

{Y, N} Y 

 

Based on our simulation study design, available population dataset that will be used 

for training and validation of Clinical Avatar BNM and the required variables in the 

simulation model, demographic, clinical, and genetic characteristics of the dataset 

are extracted and calculated. Prior to this step, the datasets are carefully vetted to 

determine the quality and quantitative properties. 

3.4.2.) Parameters 

For each study population, we extract and record the clinically and 

physiological valid ranges for each variable and create a representative 

statistical correlation of the variables important to the study. As explained in 

section 3.4.1, these characteristics are crucial to create clinical avatars model 

and simulation and PK/PD models. This information along with published 

statistics, correlations, and clinical associations will be used to define a clinical 

avatar statistical data model representative of a hypothetical population of 

warfarin patients. Then the clinical avatar simulation framework is used to 

generate clinical avatar populations. Each clinical avatar will reflect a 

hypothetical patient’s medical record and the collection of avatars (the clinical 
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avatar population) will adhere to the prescribed statistics and inter-variable 

correlation structure prescribed by the clinical avatar model. 

As an example, Table 3.7 presents the initial statistical distribution of the 5700 

warfarin patient medical record datasets in PharmGKB (Whirl-Carrillo, 2012). 

The statistical results displayed in the table show the first order analysis 

(mean and standard deviation) of the variables assuming independence. The 

far right column provides a p-value for tests between the actual PharmGKB 

data and representative simulated clinical avatars. 

Table 3.7. Statistical characteristics of the PharmGKB warfarin dataset versus 
its clinical avatar population. 

Parameter 
Actual PharmGKB Patients 

(n=5700) 

Clinical Avatars 

(n = 20,000) 

P-

Value 

Age 

<18 

18 – 24 

25 – 44 

45 – 64 

65 – 94 

 

0.18% (10) 

1.3% (75) 

9.9% (559) 

36% (2,040) 

52.5% (2,974) 

 

0.13% (26) 

1.2% (235) 

9.8% (1,957) 

36.4% (7,282) 

52.5% (10,500) 

0.75 

Gender by age 

<18 

 

18 – 24 

 

25 – 44 

 

45 – 64 

 

65 – 94 

 

M: 30% (3) 

F: 70% (7) 

M: 42.7% (32) 

F: 57.3% (43) 

M: 49.9% (279) 

F: 50.1% (280) 

M: 60% (1225) 

F: 40% (815) 

M: 59.3% (1,855) 

F: 40.7% (1,272) 

 

M: 34.6% (9) 

F: 65.4% (17) 

M: 47.2% (111) 

F: 52.7% (124) 

M: 50.6% (990) 

F: 49.4% (967) 

M: 59.4% (4,324) 

F: 40.6% (2,958) 

M: 59.4% (6,353) 

F: 40.6% (4,344) 

0.89 

Race 

  White 

  African American 

  Native American 

  Asian 

  Pacific Islander 

  Other  

  Unknown 

 

54.8% (3,122) 

8.1% (462) 

0% (0) 

28.7% (1,634) 

0% (0) 

0% (0) 

8.4% (482) 

 

54.2% (10,835) 

7.9% (1,583) 

0% 

29.7% (5,936) 

0% 

0% 

8.2% (1,646) 

0.51 

Height (in) 

Mean 

Min 

Max 

 

66.11 ± 4.3 

49 

80 

 

66.50 ± 4 

49 

80 

1.2e-8 
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As mentioned in the previous sections, we use PK/PD models to simulate 

anticoagulation medication response (e.g., INR). The PK/PD model predicts 

treatment outcomes depending on the medication, its metabolism, clearance 

and physical properties. As an example, 2 different clinical avatars (that 

represent 2 patients) may have different outcomes on the same medication-

dosing algorithm and -protocol plan. In addition, the clinical avatars may have 

very different outcomes for 2 different medication-protocol plans or even for 

the same medication but different dosing protocols. As explained in section 

3.2.7, we have implemented a PK/PD model for daily warfarin dosing whose 

PK model uses a 2-compartment model with first order input and first order 

elimination and its PD model affects using a 2-chain transit compartment 

Weight (lbs) 

Mean 

Min 

Max 

 

171.58 ± 48.2 

66 

524 

 

173.51 ± 27.87 

92 

290 

7.7e-

31 

Smoker 

  White 

  African American 

  Native American 

  Asian/Pac Islander 

  Other/Unknown 

 

14.4% (324) 

20.8% (91) 

0% (0) 

6.4% (18) 

6.5% (16) 

 

14.3% (1,552) 

20.9% (332) 

0% (0) 

5.7% (340) 

5.7% (94) 

2.4e-

11 

Amiodarone 

Yes 

No 

 

4.5% (258) 

95.5% (5,442) 

 

4.6% (921) 

95.4% (19,079) 

 

DVT 

Yes 

No 

 

16.4% (817) 

83.6% (4,191) 

 

16% (3,203) 

84% (16,797) 

 

VKORC1 

A/A 

A/B 

B/B 

 

52.2% (1,245) 

25.8% (614) 

22.0% (525) 

 

52% (10,404) 

26.3% (5,261) 

21.7% (4,335) 

0.83 

CYP2C9 

*1/*1 

*1/*2  

*1/*3 

*2/*2 

*2/*3 

*3/*3 

 

74.9% (4,155) 

13.4% (742) 

9% (501) 

1% (58) 

1.3% (72) 

0.4% (22) 

 

75.4% (15, 079) 

13.4% (2,676) 

8.8% (1,756) 

1% (194) 

1.1% (227) 

0.3% (68) 

0.81 
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model. The predictive variables for this PK/PD model are: age, CYP2C9 and 

VKORC1 genotypes. So, these three characteristics of the clinical avatars are 

used to run the PK/PD model and predict INRs.    

3.5.) Outcome Metrics 

In anticoagulation therapy studies, a number of outcome metrics are used to 

measure the quality of therapy. They generally are categorized into two group; 

primary and secondary.  

3.5.1.) Primary Outcome Metrics 

The main primary outcome is the percentage of time in therapeutic range 

(TTR) of international normalized ratio (INR). TTR could be calculated using 

different methods explained in section 3.3.2. TTR is the most popular and 

widely used quality measure to monitor warfarin management. During the 

process of anticoagulation which is usually a long term one, most risk factors 

for bleeding or thromboembolic events such as age and underpinning 

comorbid conditions cannot be changed and the only modifiable factor that 

can be improved to avoid such complications is TTR (Levine, 1998).    

3.5.2.) Secondary Outcome Metrics 

This group of outcomes are categorized in the two following groups; principal 

secondary outcomes and non-principal secondary outcomes. The secondary 

outcomes are as follows: 

- Occurrence of INR >4 or major clinical events in the first 4 weeks. This 

composite outcome measure is a principal secondary outcome measure and 

is defined as any INR of 4 or more, major bleeding, or thromboembolism in 

the first 4 weeks. The major clinical outcomes to be included in this measure 
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are major bleeding and thromboembolism events. The reason this measure is 

an important outcome measure is that many studies have shown that there is 

a significant correlation between INR >4 and increase risk of bleeding (van 

der Meer, 1993). 

- Time to first therapeutic INR. This is measure defined as the first INR that is 

between the therapeutic ranges of INR depending on the indication of 

anticoagulation therapy. Even though it looks that this measure is an 

important one but there is no evidence showing a correlation between this 

measure and improved clinical outcomes of anticoagulation. 

- Time to the determination of a maintenance dose. This is an outcome 

measure which is defined as the time to two consecutive INR measurements 

in therapeutic range without any change in dose, measured at least 1 week 

apart (Kimmel, 2013).  

- Time to an adverse event. This measure is defined as the time to occurrence 

of adverse events ranging from minor bleedings and thromboembolism (TIA) 

to major bleedings and thromboembolism as well as death in specific time 

frames (e.g., 4 weeks and 3 months). Bleeding is the most serious 

complication of the use of oral anticoagulation in the prevention and treatment 

of thromboembolic complications. The definition of this event as used in major 

clinical trials is the following one adopted from the Italian Study on 

Complications of Oral Anticoagulant Therapy (Palareti, 1996):  Major bleeding 

is classified as: “fatal (death due to hemorrhage); intracranial (documented by 

imaging), ocular (with blindness), articular, or retroperitoneal; if surgery or 

angiographic intervention was required to stop bleeding; and if bleeding led to 

hemoglobin reduction of 2 g/dL or more and/or need for transfusion of two or 



www.manaraa.com

127 

 

 

 

more blood units. Minor bleeding is all cases of bleeding not classified as 

major. Non-relevant (small) bleeding is bruising, small ecchymosis or 

epistaxis, occasional hemorrhagic bleeding, or microscopic hematuria.”  
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4.1.) Introduction 

The Patient-Centered Outcomes Research Institute (PCORI) has proposed 

and approved five national priorities for research (Shelby, 2012). The goal of 

the fifth priority “Accelerating patient-centered outcomes research and 

methodology” is “Improving the nation’s capacity to conduct patient-centered 

outcomes research, by building data infrastructure, improving analytic 

methods, and training researchers, patients and other stakeholders to 

participate in this research.” The PCORI’s “National Priorities for Research 

and Research Agenda” encompasses a number of prioritized research areas. 

Secondary use of large diverse healthcare EMR data for patient-centered 

comparative effectiveness research (PC-CER) is highlighted under the fifth 

priority as “The Research that determines the validity and efficiency of data 

sources commonly used in PCOR.” The offered examples are: research that 

seeks to improve the volume, completeness, comprehensiveness, accuracy, 

and efficiency of use of clinical data collected across healthcare systems, 

clinical data networks, registries, or payer databases, and the utility of this 

data for conducting longitudinal studies of patient outcomes; research that 

explores the potential of large clinical data networks to support PCOR; or 

research that develops and promotes the utility, performance, and efficiency 

of large clinical data networks or registries for supporting patient-centered 

outcomes research for patients with rare diseases. This agenda encourages 

conducting a spectrum of PC-CER studies including health care disparity in 

part by seeking evidence of treatments’ effectiveness across various 

populations.  



www.manaraa.com

139 

 

 

 

American Medical Informatics Association (AMIA) has defined secondary use 

of data (Safran, 2007) as “non-direct care use of personal health information 

(PHI) including but not limited to analysis, research, quality/safety 

measurement, public health, payment, provider certification or accreditation, 

and marketing and other business including strictly commercial activities.” 

Basically, secondary use of data implies use of health data for any purpose or 

activity other than direct healthcare delivery such as quality and safety 

measurement, clinical and translational research and improvement public 

health. Quality EMR data is central to any secondary use of the data and is 

essential to the process of decision-making and providing good quality patient 

care (Cruz-Correia, 2010). Secondary use of EMR as a means of 

retrospective analysis of health data has potentials to accelerate knowledge 

translation in healthcare and constitutes a significant part of clinical research. 

Currently, secondary use of clinical data is still at its early stage (Prokosch, 

2009). National initiatives have been established to extend and facilitate 

secondary use of EMR to support clinical research (CDRNs, 2014). 

Aurora Health Care (AHC) is the largest health care system in Wisconsin 

operating 15 hospitals throughout the state with more than 3600 licensed 

beds, 172 physician clinic facilities, and several other health care related 

entities. It serves about 1.2 million unique patients each year through 7.8 

million patient encounters per year. AHC’s EMR is the most comprehensive 

(by size, type of health care and period of time) digitized health care resource 

of Southeast Wisconsin’s population capturing urban, suburban, and rural 

constituents of all racial, ethnic, and socioeconomic backgrounds. This 
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resource provides a unique opportunity to capture data and information vital to 

conducting retrospective and predictive PC-CER studies.  

UWM and AHC have established a collaboration to conduct a series of 

research studies whose goal is to, using AHC electronic medical records 

(EMR), demonstrate that in silico pharmacogenetic PC-CERs based on actual 

EMR patient data provide predictive evidence useful in detecting “optimal” 

anticoagulation dosing protocols that reduce adverse drug responses, 

improve overall patient outcomes and reduce health disparities in the Aurora 

Milwaukee County patient population. One of the main steps in this 

collaboration is to build a longitudinal EMR-based anticoagulation research 

database. Such a database is an essential tool in conducting 

pharmacogenetic PC-CERs. 

However, there are challenges in the re-use of the data captured and stored 

in EMR systems for comparative-effectiveness studies as they have not been 

originally been developed for research purposes. Some of the most popular 

barriers and challenges to the secondary use of EMR data are as follows: 

missing data, erroneous data, uninterpretable data, inconsistencies among 

providers and over time, and data stored in noncoded text notes (free text) 

(Bayley, 2013; Elkin, 2010). Considering the fact that the designed 

pharmacogenetic PC-CER studies by UWM and AHC required quality data, a 

rigorous multilayer and iterative process of extraction, transformation and 

loading (ETL) was designed and performed to ensure the resulted research 

database fits the use. In the following sections the ETL process and the 

research database are explained. 
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4.2.) Methods 

The process of developing the anticoagulation research database consisted of 

an iterative process of extraction, transformation and loading by the two 

teams of Aurora Health Care (AHC) and University of Wisconsin-Milwaukee 

(UWM). The first step was to determine the scope of the desired data. 

4.2.1.) Determination of Inclusion Criteria and Scope of 

Data 

After a rigorous literature review, the UWM team developed a data model of 

the required patient’s attributes and value sets for extracting the required data 

from AHC EMR data repository. Based on some practical facts, the data 

model was refined collaboratively by the UWM and AHC teams to be 

compatible with the data models and dictionaries of the heterogeneous AHC’s 

databases (Table 4.1.). For example, even though the initial data model 

included the full lists of National Drug Code (NDC) codes for each of the 

included medications or associated ICD-10 codes were considered for clinical 

characteristics (e.g., medical indication and comorbidities), the final model 

were refined to include medication names and ICD-9 codes given that AHC 

data warehouse were not using NDC and ICD-10 codes. 

Table 4.1. Patient’s characteristics used to identify patients with evidence of 
anticoagulation/anticlotting treatment from AHC’s EMR data warehouse. 

Patient Characteristics ICD-9 or CPT Codes 

Demographics  

Gender Male, Female, Unknown 

Age Year (Age >=18) 

Patient’s Zipcode 5-digit zipcode 

Patient’s County  

Patient’s City  

Provider’s Zipcode 5-digit zipcode 

Smoking Status  
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Race  

Height Inch 

Weight Pound 

Date of Visit  

Date of Death  

Medications  

Date Received/Date Prescribed   

Medication Type: 

- Coumadin (Warfarin) 

- Heparin 

- Ticlopidine (Ticlid) 

- Clopidogrel (Plavix) 

- Dipyridamole (Persantine) 

- Abciximab (ReoPro) 

- Eptifibatide (Integrilin) 

- Tirofiban (Aggrastat) 

- Dabigatran (Pradaxa) 

Name of the medications 

Dosage  

Frequency  

Interacting Medications  

Date Received/Date Prescribed  

Medication Type: 

- Amiodarone (Cordarone, Pacerone) 

- Simvastatin (Zocor) 

- Fluvastatin (Lescol) 

- Lovastatin (Altocor, Altoprev, 

Mevacor) 

- Atrovastatin (Lipitor) 

- Rosuvastatin (Crestor) 

- Pravastatin (Pravachol) 

- Aspirin 

Name of the medications 

Dosage  

Frequency  

Medical Indications  

Date of Indication  

  Indication Type:  

- Orthopedic Procedures 

 

CPT codes: 77.65, 77.66, 77.67, 77.69, 

77.75, 77.76, 77.77, 77.79, 77.85, 77.86, 

77.87, 77.95, 77.96, 77.97, 78.05, 78.06, 

78.07, 78.09, 78.15, 78.16, 78.17, 78.19, 

78.25, 78.27, 78.29, 78.35, 78.37, 78.39, 

78.45, 78.46, 78.47, 78.49, 78.55, 78.56, 

78.57, 78.59, 79.05, 79.06, 79.09, 79.15, 

79.16, 79.19, 79.25, 79.26, 79.29, 79.35, 

79.36, 79.39, 79.45, 79.46, 79.49, 79.55, 

79.56, 79.59, 79.65, 79.66, 79.69, 79.75, 

79.76, 79.79, 79.85, 79.86, 79.89, 80.25, 

80.26, 80.27, 80.6, 80.75, 80.76, 81.00, 

81.09, 81.30, 81.39, 81.40, 81.42, 81.43, 

81.44, 81.45, 81.46, 81.47, 81.49, 81.51, 

81.52, 81.53, 81.54, 81.55, 81.56, 81.57, 
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81.59, 81.61, 81.62, 81.63, 81.64, 81.65, 

81.66, 84.10, 84.11, 84.12, 84.13, 84.14, 

84.15, 84.16, 84.17, 84.18, 84.19, 84.26, 

84.27, 84.28, 84.45, 84.46, 84.47, 84.48, 

84.51, 84.58, 84.59, 84.60, 84.61, 84.62, 

84.63, 84.64, 84.65, 84.66, 84.67, 84.68, 

84.69, 84.80, 84.81, 84.82, 84.83, 84.84, 

84.85, 84.91 

- Deep vein thrombosis (DVT) ICD-9 codes: 451.x, 453.x 

- Pulmonary embolism (PE)  ICD-9 codes: 415.1x 

- Atrial fibrillation  ICD-9 codes: 427.31 

- Atrial flutter  ICD-9 codes: 427.32 

- Atrial fibrillation and flutter  ICD-9 codes: 427.3 

- Stroke  ICD-9 codes: 433.x, 434.x, 435.x, 436, 

437.1x, 437.9x, 438.x 

- Heart valve replacement  ICD-9 codes: V43.3 

Lab Test Results  

INR Test Result Numeric 

Date of INR Test  

Adverse Events/Comorbidities  

Date of Event/Comorbidity  

Event Type:  

- Deep vein thrombosis (DVT)  ICD-9 codes: 451.x, 453.x 

- Pulmonary embolism (PE)  ICD-9 codes: 415.1x 

- Stroke  ICD-9 codes: 433.x, 434.x, 435.x, 436, 

437.1x, 437.9x, 438.x 

- Myocardial infarction  ICD-9 codes: 410.x 

- Bleeding  ICD-9 codes: 431.x, 432.x, 459.0, 578, 

578.9, 784.7, 784.8, 786.30 

- Diabetes Mellitus ICD-9 codes: 250.x 

- Heart Failure ICD-9 codes: 428.x 

- Hypertension ICD-9 codes: 401.x 

- Peripheral artery diseases ICD-9 codes: 250.6, 443.x, 785.4 

- Atherosclerosis of aorta ICD-9 codes: 440-0 

- Coronary artery disease ICD-9 codes: 414.0x 

 

4.2.1.1.) Extract, Transform, and Load (ETL) Process 

The process of extraction, transformation and loading (ETL) of data is usually 

a multilayer, iterative one addressing both data and data models. In this 

project, the ETL process was done by both AHC and UWM LPHIG teams. 
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4.2.1.1.1.) AHC ETL Process 

Once the Internal Review Board (IRB) approval was granted by both AHC and 

UWM and a Data Use Agreement was signed by two institutes, the AHC 

team, before delivering the data to UWM team, performed an internally 

developed ETL process to identify, extract, transform and load patient’s 

records into a database. Using the data model depicted in Table 4.1, the AHC 

team constructed the extraction algorithms and search strategies to mine 

AHC’s hospitals’ and clinics’ EMR data warehouses and retrieved the AHC 

EMR for patients treated with anticoagulation/anticlotting agents for the period 

of 2002 to 2012 and subsequently all post-treatment events from each patient. 

In the process of the transformation, the patient data was de-identified per 

IRB approval (allowing zipcode) by an AHC honest broker. This process 

resulted in the longitudinal data records of 157,450 patients including: gender, 

race, height, weight, age, day of visit, patient's zipcode, patient's city, 

provider's zipcode, smoking status, INR, medications received (day, dose, 

frequency), interacting medications (Amiodarone, Simvastatin, Fluvastatin, 

Lovastatin, Atrovastatin, Rosuvastatin, Pravastatin, Aspirin), medication 

indications (by ICD-9 codes for Deep Vein Thrombosis (DVT), Pulmonary 

embolism, Atrial fibrillation, Atrial flutter, Atrial fibrillation and flutter, Stroke, 

Heart valve replacement and CPT codes for Orthopedic surgery-hip or knee) 

and comorbidities (by ICD-9 codes for DVT, Pulmonary embolism, Stroke, 

Myocardial infarction, Bleeding). The AHC team loaded the data into an MS 

Access database (“Original Access Database”). The data model of the Access 

database is depicted in Figure 4.1. 
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4.2.1.1.2.) LPHIG ETL Process 

Once receiving the Original Access Database, the UWM LPHIG (Laboratory 

for Public Health Informatics and Genomics) team performed another iterative 

round of ETL process aiming to create the anticoagulation/anticlotting 

research database namely Wisconsin Anticoagulation Database (WiAD). The 

first round of the ETL process at this stage was to remove complete duplicate 

records from the Original Access Database’s tables, identify primary and 

foreign keys across the tables and create a relational database in a MySQL 

Server which would be a “Base Database” for further processes. The Entity 

Relationship (ER) data model of the MySQL Base Database is depicted in 

Figure 4.2. This process was followed by another round of transformation 

including multiple steps of cleaning up the data and data validation and quality 

Figure 4.1. The Data Model of the Original Access Database Provided by 
AHC Team. 
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control. In this process, few data dictionaries were developed for some of the 

attributes’ value sets. 

Data cleaning and quality control is an important task in the process of 

developing research databases especially when the extracted data come from 

heterogeneous data sources. Data cleaning is basically a process in which 

errors and inconsistencies in data are detected and removed.  

 

Subsequent data cleaning, quality control and quality assurance included an 

iterative process of data parsing to detect irregularities; statistical analysis 

designed to test population-wide distributions and possible biases; refinement 

of inclusion and extraction data mining codes to address irregularities, 

possible missing data and detected biases; and ultimately, data 

transformation to produce a cohesive set of records capturing all available 

Figure 4.2. Entity Relationship (ER) Data Model of the Base MySQL Database.  
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medical records in a consistent format following Weiskopf (2013). According 

to Weiskopf different dimensions of data quality are as follows: 

- Completeness: “Is a truth about a patient present in the EMR?” 

- Correctness: “Is an element that is present in the EMR true?” 

- Concordance: “Is there agreement between elements in the EMR, or 

between the EMR and another data source?” 

Table 4.2. AHC dataset’s data quality issues. 

 

 - Plausibility: “Does an element in the EMR makes sense in light of other 

knowledge about what that element is measuring?” 

Scope/Problem Original Data 

Attribute 

Missing values Race = “UNKNOWN” 

Misspellings Medication Name= “warfin” 

Awkward Abbreviations Medication Frequency= “zUBC” 

Free Text Embedded values 

Medication Name= “warfarin 2.5 
mg 5 days a week  

and 2 mg two days a week” 

Miscoded values Patient zip code= “WI” 

Incorrect values Weight= -165 

Record 

Violated attribute dependency 
City= “Milwaukee”, zip 
code=99999 

Duplicated records 
(partial and complete) 

ID=165, Day= 199; Medication= 
Warfarin 4 mg, Frequency= QOD; 

ID=165, Day= 199; Medication= 
Warfarin 4 mg, Frequency= daily 

Contradicting records 

ID= 78, Day= 1101, Medication= 
Coumadin, Dose= 3 mg; 

ID= 78, Day= 1101, Medication= 
Coumadin, Dose= 4 mg 
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- Currency: “Is an element in the EMR a relevant representation of the patient 

state at a given point in time?” 

We identified a number of data quality issues across the AHC dataset stored 

in the Base Database. Table 4.2 demonstrates the data quality issues of the 

AHC data at attribute and cross-attribute (record) levels. 

To address these data quality issues across the AHC’s structured and 

unstructured data, the team performed a number of data quality and cleaning 

tasks as detailed below. 

- Age: Although the AHC data is longitudinal, there was only one Gender and 

one Age record for each unique subject stored in table “patients”. The rate of 

missing data for age was very low (i.e., 1 subject). However, about 1% of the 

whole population (i.e., 2662 subjects) have age value of 0. Subjects with age 

of zero or missing age were excluded. Since our age inclusion criteria was 

subjects with the age of 18 years old or above, any subject with an age lower 

than 18 years old (i.e., 357 subjects) was excluded. The following table (Table 

4.3.) shows the age distribution of subjects in the AHC Base Database. As 

depicted, the most populated age groups are 65-74 and 75-84 years old  

Table 4.3. Age distribution of the subjects in the AHC Base Database. 

Age Group (Years) Percentage 

18-24 1.09 

25-34 2.46 

35-44 5.81 

45-54 14.11 

55-59 9.92 

60-64 10.62 

65-74 22.22 

75-84 22.70 

>85 11.08 
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which is consistent with the fact that the prevalence of anticoagulation therapy 

increases as people get older and experience more chronic diseases. 

- Gender: The gender values were either female or male. Less than 0.01% of 

the subjects had no gender information. The subjects with missing gender 

were excluded from the study population. Table 4.4 depicts the gender 

distribution of the subjects in the AHC Base Database compared to that of in 

Milwaukee county (MKE) and Wisconsin (WI). As a quality control measure, 

the age distribution of the AHC Base Database was compared with that of 

MKE and WI which did not show significant difference (p >0.05). 

Table 4.4. Gender Distributions across the three populations of AHC Base 
Database, Milwaukee County (MKE) and Wisconsin (WI). 

Gender AHC Base Database (%) MKE (%) WI (%) 

Male 50.34 48.30 49.60 
Female 49.65 51.70 50.40 
Missing 0.01 NA NA 

 

- Race: In the AHC Base Database, each subject had one race record. Race 

is a key piece of information for our PC-CER studies. Only 52.85% of AHC 

Base Database’s subjects had race information. About 0.01% of the subjects 

in table “race” (i.e., 1662 subjects) had no race information. The race values 

of the subjects were: White, Black or African American, Asian, American 

Indian or Alaskan Native, Native Hawaiian/Other Pacific Islander and 

Unknown. The following table (Table 4.5) depicts the racial distribution of the 

AHC Base Database’s subjects who had identified race information versus the 

racial distributions across Milwaukee County (MKE) and Wisconsin (WI). As a 

quality control measure, the racial distribution of the AHC Base Database was 

compared with that of MKE and WI. The racial distributions of the Base 

Database was not significantly different from that of WI (p >0.05). 
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Table 4.5. Race distribution across the AHC Base Database’s subjects and 
Milwaukee County’s and Wisconsin’s populations. 

Race AHC Base Database (%) MKE (%) WI (%) 
White 90.41 65.9 88.4 
Black or African 
American 

8.52 27.0 6.5 

American Indian and 
Alaska Native 

0.27 0.9 1.1 

Asian 0.79 3.6 2.4 
Native Hawaiian or Other 
Pacific Islander 

0.02 0.1 0.05 

Subjects reporting two or 
more races 

NA 2.5 1.6 

 

- Height: In the AHC Base Database, each subject has longitudinal height 

records with multiple height records for each measurement day which were 

not on a regular basis. Each height record contained the attributes 

{SURROGATE_ID, DAY, HEIGHT, SOURCE_SYSTEM}. Since height 

measurement can vary within a specific time frame due to factors such as lack 

of standard protocols, inaccurate measuring, and imprecise equipment set-up, 

we created a cleaning algorithm. Before applying the algorithm, first, each 

height record was examined to identify and exclude any height record whose 

Figure 4.3. Height records cleaning algorithm. 
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HEIGHT attribute’s value was missing. Then the height cleaning algorithm 

was applied (Figure 4.3).   

According to the algorithm, we first removed all height values we considered 

biologically implausible (Census Bureau, 2012; Muthalagu, 2014). 

Accordingly, we set the plausible thresholds greater than 39.5 inches and less 

than 98.5 inches. Then we took the next steps of the algorithm. If all height 

records for a single subject in a single day differed (i.e., difference between 

minimum height and maximum height for the same day) by less than 

measurement error of 1.5 inches (Muthalagu, 2014), then all height records 

for that subject for that day were marked correct by the algorithm and the 

mean of the height records was calculated representing height value for the 

day. For all other days, median height for each day was calculated. The 

median height for each day was compared with that of the prior and next 

median; when the difference in medians was greater than 1.5 inches for both, 

the median height for that day was considered as potentially erroneous 

(Muthalagu, 2014). For the days that had an erroneous median height, the 

algorithm assigned the nearest correct median height. 

The rate of height record completeness for the AHC Base Database was 

43.17%. The subjects with height records had 3.07 height records on 

average. The average height of the population was 66.09 inches (±7.23).  

- Weight: In the AHC Base Database, each subject has longitudinal weight 

records with multiple weight records for each measurement day which were 

not on a regular basis. Each weight record contained the attributes 

{SURROGATE_ID, DAY, WEIGHT, SOURCE_SYSTEM}. Since weight 

measurement can vary within a specific time frame due to factors such as 
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lack of standard protocols, inaccurate measuring, and imprecise equipment 

set-up, we created a cleaning algorithm. Before applying the algorithm, first, 

each weight record was examined to identify and exclude any weight record 

whose WEIGHT attribute’s value was missing. Then the weight cleaning 

algorithm was applied (Figure 4.4).   

According to the algorithm, we first removed all weight values we considered 

biologically implausible (Census Bureau, 2012). We set the plausible 

thresholds greater than 70 pounds and less than 500 pounds. Then we took 

the next steps of the algorithm. If all weight records for a single subject in a 

single day differ (i.e., difference between minimum weight and maximum 

weight for the same day) by less than measurement error of 10% (Maskin, 

2010), then all weight records for that subject for that day are marked correct 

by the algorithm and the mean of the weight records is calculated 

representing weight value for the day. For all other days, median weight for 

each day is calculated. The median weight for each day is compared with that 

of the prior and next median; when the difference in medians is greater than 

Figure 4.4. Weight records cleaning algorithm. 
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measurement error for both, the median weight for that day is considered as 

potentially erroneous. For the days that have an erroneous median weight, 

the algorithm assigns the nearest correct median weight. 

The rate of weight record completeness for the AHC Base Database is 

49.58%. The subjects with weight records had 7.39 weight records on 

average. The average weight of the population was 195.12 pounds (±50.1).  

- Medications: In the AHC Base Database’s table “medication”, each subject 

has multiple medication records. Each medication record contained the 

attributes {SURROGATE ID, DAY, MEDICATION_NAME, FREQ, 

DOSE_QTY, DOSE_QTY_UNIT, SOURCE_SYSTEM}. In the table, the entire 

columns of {DOSE_QTY, DOSE_QTY_UNIT} were completely blank. The 

column {FREQ} was partially complete. The cells under column 

{MEDICATION_NAME} were populated with free-text. Before conducting any 

cleaning or quality control measures, we had to extract information from the 

free-text in cells under column {MEDICATION_NAME} and translate them into 

a structured format. Through a text analysis step, the required data from the 

free text were extracted and presented in normalized and consistent 

structured formats. We used a multistep process which involved parsing the 

free texts into their components, normalizing the identified components, and 

extraction of the required data elements (i.e., name of medication, dosage, 

unit, and route of administration). The rate of incompleteness of the resulted 

records was high. Table 4.6 depicts the distribution of medication records by 

each medication in the cleaned and controlled medication table and also 

presents an example of the rate of completeness (i.e., percentage of each 

medication’s records with dosage information). 99.02% of the medications 
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records included one of the three medications of warfarin (37.85%), heparin 

(36.24%) and clopidogrel (24.93%). Warfarin records which have dosage 

information have the highest percentage of whole the records (11%). Although 

the number of heparin records was higher than the number of clopidogrel 

records, the percentage of clopidogrel records with dosage information out of 

whole the records was higher than that of heparin.   

Table 4.6. Distribution of number of subjects under each medication and the 
rate of medication records’ dosage information completeness. 

Medication 
Number of 

Subjects under 
Medication 

Rate of the Records’ 
Dosage Information 

Completeness  

Warfarin 74,102 70.03% 

Heparin 71,537 33.4% 

Clopidogrel 61,517 68.03% 

Dabigatran 1,793 89.18% 

Dipyridamole 2,292 22.9% 

Eptifibatide 2886 71.58% 

Ticlopidine 434 73.5% 

Abciximab 1,310 90.15% 

Tirofiban 48 0% 

The above table indicates that a big number of subjects have received more 

than one medication. The following table (Table 4.7) shows the number of 

subjects who have been under treatment with 1 to 6 medications. 

Table 4.7. Distribution of subjects by number of medications. 

No. of 
Medications 

1 2 3 4 5 6 

No. of Subjects 75282 16441 3049 358 20 1 
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- Patient Residence: In the AHC Base Database’s table “patient_residence”, 

each subject has multiple residence records. Each residence record 

contained the attributes {SURROGATE_ID, DAY, PATIENT_ZIP, 

PATIENT_CITY, SOURCE_SYSTEM}. As a quality control measure, the 

recorded 5-digit zipcodes were examined against a standard zipcode 

dictionary to find any inconsistency between the recorded zipcodes and their 

recorded associated cities. It also helped find and exclude invalid numeric or 

non-numeric values which were reported as 5-digit zipcodes (e.g., 0, 99999, 

WI, MI, *R2Y1, *CV11, *). 83.73% of the whole AHC Base Database’s 

population have at least one residence record. The partially (i.e., the same 

zipcode on the same day at two different “SOURCE_SYSTEM”s) and 

complete duplicated records were also excluded (46.36% of the records). 

After the above QC and cleaning process, the average number of residence 

records for each subject with residence records was 1.76 (range 1-4). Out of 

the subjects with residence record, 3.33% had more than one reported 

zipcode. The reported zipcodes were distributed across 44 states with the 

highest frequency in Wisconsin, Illinois, Michigan, and Florida. The subjects in 

Wisconsin were also distributed across the 72 counties of the state with the 

highest frequency in counties Milwaukee, Sheboygan, Racine, Waukesha, 

Walworth, and Kenosha. The distribution of the subjects across the states and 

the counties have been visualized on two separate interactive Google Maps at 

the following URLs: 

https://www.google.com/fusiontables/DataSource?docid=1MPew8EhUQvoES

HZJP9RaykxHDm8ir0W7LUhYC4U#map:id=3 
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https://www.google.com/fusiontables/DataSource?docid=1OP6Wrdt56g6ZAt0j

Yuyt3i4nc6RbUBFElqVtvnU  

The following figure demonstrates a snapshot of the map displaying the 

subject distribution across the counties of Wisconsin. 

- Provider Location: In the AHC base database’s table “provider_location”, 

each subject has multiple provider location’s records. Each provider location’s 

record contained the attributes {SURROGATE ID, DAY, PROVIDER_ZIP, 

SOURCE_SYSTEM}. As a quality measure, the recorded 5-digit zipcodes 

were examined against a standard zipcode dictionary to find and exclude any 

invalid recorded zipcodes. 54.10% of the whole AHC Base Database’s 

population have at least one provider location record. The partially (i.e., the 

same zipcode on the same day at two different “SOURCE_SYSTEM”s) and 

complete duplicated records were also excluded (3.93% of the records). The 

average number of provider location records for subjects with provider 

location records was 1.06 (range 1-4). Out of the subjects with provider 

> 10,000 

5,000-9,999 

1,000-4,999 

< 1,000 

Figure 4.5. Distribution of AHC Base Database’s subjects across 
Wisconsin counties. 
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location record, 6.65% had more than one reported zipcode. The reported 

provider locations’ zipcodes were distributed across 20 states with the highest 

frequency in Wisconsin and Illinois (97.75% and 1.15%, respectively). The 

provider locations in Wisconsin were also distributed across the 29 counties of 

the state with the highest frequency in counties Milwaukee and Brown 

(59.56% and 8.65%, respectively). 

- Smoking: In the AHC Base Database’s table “smoking”, each subject has 

longitudinal smoking records with multiple smoking records for each record 

day which were not on a regular basis. Each smoking record contained the 

attributes {SURROGATE_ID, DAY, TOBACCO_USE, SOURCE_SYSTEM}. 

The TOBACCO_USE value fields were populated with a large number of 

different unstructured data values. To address this issue, a dictionary was 

created to refine and translate the recorded values to a set of well-defined 

ones (Table 4.8). Almost 68% of the Base Database’s subjects had smoking 

status records.  

Table 4.8. Smoking Status value dictionary. 

Tobacco Use 
Smoking 
Status 

Definition 

Current Smoker YES Currently Smoker 

Former Smoker < or = to 12 months ago NO Not currently smoker 

Former Smoker >12 months ago NO Not currently smoker 

Never Smoker NO Never smoker 

Unknown if Ever Smoked NO Unknown 

 

- Indication: In the AHC Base Database’s table “indication”, each subject has 

multiple indication records. Each indication record contained the attributes 

{SURROGATE ID, DAY, CODE, SOURCE_SYSTEM}. As a quality measure, 

first, the reported codes were examined against the published ICD-9 CM 2011 
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codes (ICD-9-CM, 2014) to test their validity (i.e., in acceptable range). All of 

the reported codes were in acceptable range (Table 4.9). 

Table 4.9. ICD-9 Codes for indications of the AHC Base Database's subjects. 

ICD-9-CM 2011 Diagnostic and Procedure 
Code Class 

Indication codes reported 

at the AHC Base Database 

Myocardial Infarction 
410 Acute myocardial infarction 
410.0 Of anterolateral wall 
410.1 Of other anterior wall 
410.2 Of inferolateral wall 
410.3 Of inferoposterior wall 
410.4 Of other inferior wall 
410.5 Of other lateral wall 
410.6 True posterior wall infarction 
410.7 Subendocardial infarction 
410.8 Of other specified sites 
410.9 Unspecified site  

410.01 410.02 410.11 410.12 

410.21 410.22 410.32 410.41 

410.51 410.72 410.81 410.82 

410.91 410.92 

Pulmonary Embolism 
415 Acute pulmonary heart disease 
415.1 Pulmonary embolism and infarction 

415.11 415.12 415.13 415.19 

Cardiac Dysrhythmias 
427 Cardiac dysrhythmias  
427.3 Atrial fibrillation and flutter 

427.31 427.32 

Cerebrovascular Disease 
432 Other and unspecified intracranial 
hemorrhage 

432.1 Subdural hemorrhage  
433 Occlusion and stenosis of precerebral 
arteries 

433.1 Occlusion and stenosis of carotid 
artery 
433.2 Occlusion and stenosis of vertebral 
artery 
433.8 Occlusion and stenosis of other 
specified precerebral artery 
433.9 Occlusion and stenosis of unspecified 
precerebral artery 

434 Occlusion of cerebral arteries 
434.1 Cerebral embolism 
434.9 Cerebral artery occlusion unspecified 

435 Transient cerebral ischemia 
435.1 Vertebral artery syndrome convert 
435.2 Subclavian steal syndrome convert 
435.3 Vertebrobasilar artery syndrome 
convert 
435.8 Other specified transient cerebral 

432.1 433.01 433.11 433.21 

433.31 433.81 433.91 434.01 

434.11 434.91 435.1 435.2 

435.3 435.8 435.9 436 437.1 

437.9 438.11 438.12 438.13 

438.14 438.19 438.21 438.22 

438.31 438.32 438.41 438.42 

438.51 438.52 438.53 438.6 

438.7 438.81 438.82 438.83 

438.84 438.85 438.89 438.9 
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ischemias convert 
435.9 Unspecified transient cerebral 
ischemia convert 

436 Acute, but ill-defined, cerebrovascular 
disease 
437 Other and ill-defined cerebrovascular 
disease 

437.1 Other generalized ischemic 
cerebrovascular disease convert 
437.9 Unspecified cerebrovascular disease 
convert  

438 Late effects of cerebrovascular disease 

438.0 Late effects of cerebrovascular 
disease, cognitive deficits 
438.1 Speech and language deficits 
438.2 Hemiplegia/hemiparesis 
438.3 Monoplegia of upper limb 
438.4 Monoplegia of lower limb 
438.5 Other paralytic syndrome 
438.6 Late effects of cerebrovascular 
disease, alterations of sensations 
438.7 Late effects of cerebrovascular 
disease, disturbances of vision 
438.8 Other late effects of cerebrovascular 
disease 
438.9 Unspecified late effects of 

cerebrovascular disease 

Gastrointestinal Hemorrhage 
578 Gastrointestinal hemorrhage 

578.1 Blood in stool 
578.9 Hemorrhage of gastrointestinal tract, 
unspecified 

578.1 578.9 

Hemorrhage in Head and Neck 
784 Symptoms involving head and neck 

784.7 Epistaxis  
784.8 Hemorrhage from throat 

784.7 784.8 

Hemorrhage in Respiratory System 
786 Symptoms involving respiratory system 
and other chest symptoms 

786.3 Hemoptysis 

786.3 

Phlebitis and Thrombophlebitis 
451 Phlebitis and thrombophlebitis 

451.1 Phlebitis and thrombophlebitis of deep 
veins of lower extremities 
451.2 Phlebitis and thrombophlebitis of 
lower extremities, unspecified 
451.8 Phlebitis and thrombophlebitis of other 
sites 
451.9 Phlebitis and thrombophlebitis of 

451.11 451.19 451.2 451.81 

451.82 451.83 451.84 451.89 

451.9 453.1 453.2 453.3 

453.41 453.42 453.51 453.52 

453.6 453.71 453.72 453.73 

453.74 453.75 453.76 453.77 

453.79 453.8 453.81 453.82 

453.83 453.84 453.85 453.86 
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unspecified site 
452 Portal vein thrombosis 
453 Other venous embolism and thrombosis 

453.1 Thrombophlebitis migrans 
453.2 Other venous embolism and 
thrombosis of inferior vena cava 
453.3 Other venous embolism and 
thrombosis of renal vein 
453.4 Acute venous embolism and 
thrombosis of deep vessels of lower 
extremity 
453.5 Chronic venous embolism and 
thrombosis of deep vessels of lower 
extremity 
453.6 Venous embolism and thrombosis of 
superficial vessels of lower extremity 
453.7 Chronic venous embolism and 
thrombosis of other specified vessels 
453.8 Acute venous embolism and 
thrombosis of other specified veins 
453.9 Other venous embolism and 
thrombosis of unspecified site 

454 Varicose veins of lower extremities 
455 Hemorrhoids 
456 Varicose veins of other sites 
457 Noninfectious disorders of lymphatic 
channels 
458 Hypotension 
459 Other disorders of circulatory system 

459.1 Postphlebitic syndrome 
459.3 Chronic venous hypertension 
(idiopathic) 
459.8 Other specified disorders of 
circulatory system 
459.9 Unspecified circulatory system 

disorder 

453.87 453.89 453.9 459.11 

459.12 459.19 459.31 459.32 

459.81 459.89 459.9 

Heart Valve Replacement 

V43.3 Heart valve 
V43.3 

 

The reported CPT Codes in the table “indication” were also examined against 

the Current Procedural Terminology (CPT) to test their validity (i.e., in 

acceptable range). The following table (Table 4.10) shows the reported the 

CPT codes. 
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Table 4.10. CPT Codes for indications of the AHC Base Database's Subjects. 

CPT Code Class CPT Codes 

Orthopedic Procedures 77.65 77.66 77.67 77.69 

77.75 77.76 77.77 77.79 

77.85 77.86 77.87 77.96 

78.05 78.06 78.07 78.09 

78.15 78.16 78.17 78.19 

78.29 78.45 78.46 78.47 

78.49 78.55 78.56 78.57 

78.59 79.05 79.06 79.09 

79.15 79.16 79.19 79.25 

79.26 79.29 79.35 79.36 

79.39 79.56 79.65 79.66 

79.75 79.76 79.85 79.86 

79.89 80.25 80.26 80.27 

80.6 80.75 80.76 81.44 

81.45 81.46 81.47 81.49 

81.51 81.52 81.53 81.54 

81.55 81.56 81.57 81.59 

81.62 81.63 81.64 81.65 

81.66 84.11 84.12 84.13 

84.14 84.15 84.16 84.17 

84.18 84.19 84.51 84.58 

84.59 84.61 84.62 84.65 

84.81 84.84 

 

On average, each subject had 1.83 indication record (range 1-14). The 

following table (Table 4.11) depicts the distribution of number of indication 

records per subject. 

Table 4.11. Distribution of number of indication records among the subjects 
with indication records. 

Number of Indication 

Records/Subject 
Number of Subjects (%) 

1 50196 (50.14) 

2 29253(29.22) 

3 12701(12.68) 

4 4990(4.98) 

5 1885(1.88) 

6 688(0.68) 
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7 251(0.25) 

8 97(<0.001) 

9 23(<0.001) 

10 9(<0.001) 

11 4(<0.001) 

12 1(<0.001) 

13 4(<0.001) 

14 1(<0.001) 

Total 100103 (100%) 

 

18.46% of the indication records were reported before patients’ first 

prescription start date of an anticoagulation medication at AHC. The 

distribution of the reported days of indications are depicted in Table 4.12. 

Table 4.12. Distribution of day numbers in which the indications were 
recorded before or after patients’ start date of anticoagulation therapy. 

Recorded Day of Indication 
Number of Indication Records 

(%) 

Within 12 weeks before the start date 13768(7.51) 

Within 4 weeks before the start date 11875(6.47) 

Within 1 week before the start date 9426(5.14) 

On the start date 26429(14.42) 

Within 1 week after the start date 35628(19.44) 

Within 4 weeks after the start date 44986(24.54) 

Within 12 weeks after the start date 54856(29.93) 

 

The complete duplicated records and partially duplicated ones (i.e., records 

with the same indication on different days) were identified and excluded 

(17.58% of the records). The following table (Table 4.13) depicts the 

distribution of number of unique indications among the subjects with indication 

records. 

Table 4.13. Distribution of number of unique indications among the subjects 
with indication records. 

Number of Unique 

Indications/Subject 
Number of Subjects (%) 

1 64360 (64.29) 
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2 25330(25.30) 

3 7056(7.04) 

4 2227(2.22) 

5 730(0.72) 

6 267(0.26) 

7 94(<0.001) 

8 23(<0.001) 

9 5(<0.001) 

10 4(<0.001) 

11 5(<0.001) 

12 1(<0.001) 

13 1(<0.001) 

Total 100103 (100%) 

 

- Comorbidity: In the AHC Base Database’s table “comorbidity”, each subject 

has multiple comorbidity records. Each comorbidity record contained the 

attributes {SURROGATE ID, DAY, CODE, SOURCE_SYSTEM}. As a quality 

measure, first, the reported codes were examined against the published ICD-

9-CM 2011 codes (ICD-9-CM, 2014) to make sure that they were in the 

acceptable range of the codes. All of the reported codes were in acceptable 

range (Table 4.14). 

Table 4.14. ICD-9 Codes for comorbidities of the AHC Base Database's 
Subjects. 

ICD-9-CM 2011 Diagnostic and 
Procedure Code Class 

Comorbidity codes reported at 

the AHC Base Database 

Myocardial Infarction 
410 Acute myocardial infarction 
410.0 Of anterolateral wall 
410.1 Of other anterior wall 
410.2 Of inferolateral wall 
410.3 Of inferoposterior wall 
410.4 Of other inferior wall 
410.5 Of other lateral wall 
410.6 True posterior wall 
infarction 
410.7 Subendocardial infarction 
410.8 Of other specified sites 

   410.9 Unspecified site 

410.01 410.02 410.11 410.12 

410.21 410.22 410.31 410.32 

410.41 410.42 410.51 410.52 

410.61 410.62 410.71 410.72 

410.81 410.82 410.91 410.92 



www.manaraa.com

164 

 

 

 

Pulmonary Embolism 
415 Acute pulmonary heart 
disease 
415.1 Pulmonary embolism and 
infarction 

415.11 415.12 415.13 415.19 

Cerebrovascular Disease 
431 Intracerebral hemorrhage 

432 Other and unspecified 
intracranial hemorrhage 

432.1 Subdural hemorrhage  
433 Occlusion and stenosis of 
precerebral arteries 

433.1 Occlusion and stenosis 
of carotid artery 
433.2 Occlusion and stenosis 
of vertebral artery 
433.8 Occlusion and stenosis 
of other specified precerebral 
artery 
433.9 Occlusion and stenosis 
of unspecified precerebral 
artery 

434 Occlusion of cerebral 
arteries 

434.1 Cerebral embolism 
434.9 Cerebral artery occlusion 
unspecified 

435 Transient cerebral ischemia 
435.1 Vertebral artery 
syndrome convert 
435.2 Subclavian steal 
syndrome convert 
435.3 Vertebrobasilar artery 
syndrome convert 
435.8 Other specified transient 
cerebral ischemias convert 
435.9 Unspecified transient 
cerebral ischemia convert 

436 Acute, but ill-defined, 
cerebrovascular disease 
437 Other and ill-defined 
cerebrovascular disease 

437.1 Other generalized 
ischemic cerebrovascular 
disease convert 
437.9 Unspecified 
cerebrovascular disease 
convert  

438 Late effects of 

cerebrovascular disease 

431 432.1 432.9 433.01 433.11 

433.21 433.31 433.81 433.91 

434.01 434.11 434.91 435.1 435.2 

435.3 435.8 435.9 436 437.1 437.9 

438.11 438.12 438.13 438.14 

438.19 438.21 438.22 438.31 

438.32 438.41 438.42 438.51 

438.52 438.53 438.6 438.7 438.81 

438.82 438.83 438.84 438.85 

438.89 438.9 
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438.0 Late effects of 
cerebrovascular disease, 
cognitive deficits 
438.1 Speech and language 
deficits 
438.2 Hemiplegia/hemiparesis 
438.3 Monoplegia of upper limb 
438.4 Monoplegia of lower limb 
438.5 Other paralytic syndrome 
438.6 Late effects of 
cerebrovascular disease, 
alterations of sensations 
438.7 Late effects of 
cerebrovascular disease, 
disturbances of vision 
438.8 Other late effects of 
cerebrovascular disease 
438.9 Unspecified late effects 
of cerebrovascular disease 

Gastrointestinal Hemorrhage 
578 Gastrointestinal hemorrhage 

578.9 Hemorrhage of 
gastrointestinal tract, 
unspecified 

578.9 

Hemorrhage in Head and Neck 
784 Symptoms involving head 
and neck 

784.7 Epistaxis  
784.8 Hemorrhage from throat 

784.7 784.8 

Hemorrhage in Respiratory 
System 

786 Symptoms involving 
respiratory system and other 
chest symptoms 
786.3 Hemoptysis 

786.3 

Phlebitis and Thrombophlebitis 
451 Phlebitis and 
thrombophlebitis 

451.1 Phlebitis and 
thrombophlebitis of deep veins 
of lower extremities 
451.2 Phlebitis and 
thrombophlebitis of lower 
extremities, unspecified 
451.8 Phlebitis and 
thrombophlebitis of other sites 
451.9 Phlebitis and 
thrombophlebitis of unspecified 
site 

452 Portal vein thrombosis 

451.11 451.19 451.2 451.81 451.82 

451.83 451.84 451.89 451.9 453.1 

453.2 453.3 453.41 453.42 453.51 

453.52 453.6 453.71 453.72 453.73 

453.74 453.75 453.76 453.77 

453.79 453.8 453.81 453.82 453.83 

453.84 453.85 453.86 453.87 

453.89 453.9 
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453 Other venous embolism and 
thrombosis 

453.1 Thrombophlebitis 
migrans 
453.2 Other venous embolism 
and thrombosis of inferior vena 
cava 
453.3 Other venous embolism 
and thrombosis of renal vein 
453.4 Acute venous embolism 
and thrombosis of deep vessels 
of lower extremity 
453.5 Chronic venous 
embolism and thrombosis of 
deep vessels of lower extremity 
453.6 Venous embolism and 
thrombosis of superficial 
vessels of lower extremity 
453.7 Chronic venous 
embolism and thrombosis of 
other specified vessels 
453.8 Acute venous embolism 
and thrombosis of other 
specified veins 
453.9 Other venous embolism 
and thrombosis of unspecified 
site 

454 Varicose veins of lower 
extremities 
455 Hemorrhoids 
456 Varicose veins of other sites 
457 Noninfectious disorders of 
lymphatic channels 
458 Hypotension 
459 Other disorders of circulatory 

system 

459.1 Postphlebitic syndrome 
459.3 Chronic venous 
hypertension (idiopathic) 
459.8 Other specified disorders 
of circulatory system 
459.9 Unspecified circulatory 
system disorder 

 

About 1/3 (37.46%) of the AHC Base Database’s subjects had comorbidity 

records. On average within the subjects with comorbidity records, each 
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subject had 1.61 comorbidity record (range 1-13). The following table (Table 

14.15) depicts the distribution of number of comorbidity records per subject. 

Table 4.15. Distribution of number of comorbidity records among the subjects 
with comorbidity records. 

Number of Comorbidity 

Records/Subject 
Number of Subjects (%) 

1 36118(61.22) 

2 14739(24.98) 

3 5188(8.79) 

4 1851(3.13) 

5 685(1.16) 

6 254(0.43) 

7 109(<0.001) 

8 29(<0.001) 

9 7(<0.001) 

10 2(<0.001) 

11 4(<0.001) 

12 1(<0.001) 

13 1(<0.001) 

Total 58988(100%) 

 

18.36% of the comorbidity records were reported before patients’ first 

prescription start date of an anticoagulation medication at AHC. The 

distribution of the reported days of comorbidities are depicted in table 4.16. 

Table 4.16. Distribution of day numbers in which the comorbidities were 
recorded before or after patients’ start date of anticoagulation therapy. 

Recorded Day of Comorbidity 
Number of Comorbidity Records 

(%) 

Within 12 weeks before the start date 7697(8.13) 

Within 4 weeks before the start date 6588(6.95) 

Within 1 week before the start date 5215(5.50) 

On the start date 13971(14.75) 

Within 1 week after the start date 20553(21.71) 

Within 4 weeks after the start date 26782(28.29) 

Within 12 weeks after the start date 32354(34.17) 
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Having compared the records of tables “indication” and “comorbidity”, it was 

revealed that 69.26% of the comorbidity records were shared with indication 

records. Given this fact, the two quality controlled and cleaned tables were 

merged to create a new table called “morbidity”. Each record of this new table 

has attributes {SURROGATE_ID, DAY, CODE, SOURCE_SYSTEM}. About 

2/3 (65.68%) of the AHC Base Database’s subjects had morbidity records. On 

average within the subjects with morbidity records, each subject had 1.71 

morbidity records (range 1-13). Table 4.17 depicts the distribution of number 

of morbidity records per subject. 

Table 4.17. Distribution of number of morbidity records among the subjects 
with morbidity records. 

Number of Morbidity 

Records/Subject 
Number of Subjects (%) 

1 57116(55.22) 

2 29131(28.16) 

3 11346(10.97) 

4 3756(3.63) 

5 1326(1.28) 

6 468(0.45) 

7 181(0.17) 

8 68(<0.001) 

9 10(<0.001) 

10 3(<0.001) 

11 8(<0.001) 

12 2(<0.001) 

13 1(<0.001) 

Total 103416(100%) 

 

38.55% of the morbidity records were reported before patients’ first 

prescription start date of an anticoagulation medication at AHC. The 

distribution of the reported days of morbidities are depicted in table 4.18. 
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Table 4.18. Distribution of day numbers in which the morbidities were 
recorded before or after patients’ start date of anticoagulation therapy. 

Recorded Day of Morbidity Number of Morbidity Records (%) 

Within 12 weeks before the start date 16430(15.88) 

Within 4 weeks before the start date 14191(13.72) 

Within 1 week before the start date 11340(10.96) 

On the start date 29200(28.23) 

Within 1 week after the start date 37351(36.11) 

Within 4 weeks after the start date 44180(42.72) 

Within 12 weeks after the start date 55412(53.58) 

 

- Interacting Medications: In the AHC Base Database’s table 

“interacting_medication”, each subject has multiple medication records. Each 

interacting medication record contained the attributes {SURROGATE ID, 

DAY, MEDICATION_NAME, FREQ, DOSE_QTY, DOSE_QTY_UNIT, 

SOURCE_SYSTEM}. In the table, the entire columns of {DOSE_QTY, 

DOSE_QTY_UNIT} were completely blank. The column {FREQ} was partially 

complete. The cells under column {MEDICATION_NAME} were populated 

with free-text. Before conducting any cleaning or quality control measures, we 

had to extract information from the free-text in cells under column 

{MEDICATION_NAME} and translate them into a structured format. Through 

a text analysis step, the required data from the free text were extracted and 

presented in normalized and consistent structured formats. We used a 

multistep process which involved parsing the free texts into their components, 

normalizing the identified components, and extraction of the required data 

elements (i.e., name of medication, dosage, unit, and route of administration). 

The rate of incompleteness of the resulted records was high. Table 4.19 

depicts the distribution of interacting medication records by each medication 

in the cleaned and controlled interacting_medication table and also presents 
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an example of the rate of completeness (i.e., percentage of each interacting 

medication’s records with dosage information).  

99.02% of the interacting medications records included one of the three 

medications of warfarin (37.85%), heparin (36.24%) and clopidogrel (24.93%). 

Warfarin records which have dosage information have the highest percentage 

of whole the records (11%). Although the number of heparin records was 

higher than the number of clopidogrel records, the percentage of clopidogrel 

records with dosage information out of whole the records was higher than that 

of heparin. 

Table 4.19. Distribution of number of subjects under each interacting 
medication and the rate of medication records’ dosage information 

completeness. 

Interacting 
Medication 

Number of Subjects 
under Interacting 

Medication 

Rate of the Records’ 
Dosage Information 

Completeness  

Amiodarone 74,102 70.03% 

Simvastatin 71,537 33.4% 

Fluvastatin 61,517 68.03% 

Lovastatin 1,793 89.18% 

Atrovastatin 2,292 22.9% 

Rosuvastatin 2886 71.58% 

Pravastatin 434 73.5% 

Aspirin 1,310 90.15% 

 

The above table indicates that a big number of subjects have received more 

than one medication. The following table (Table 4.20) shows the number of 

subjects who have been under treatment with 1 to 6 medications. 
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Table 4.20. Distribution of subjects by number of medications. 

 

- INR: In the AHC Base Database, each subject has longitudinal INR records 

with multiple INR records for each measurement day which were not on a 

regular basis. Each INR record contained the attributes {"SURROGATE_ID", 

"EFFECTIVE_DAY", "LAB_DESCRIPTION", "LAB_VALUE", 

"SOURCE_SYSTEM"}. Since INR measurement can vary within a specific 

time frame due to factors such as different measurement methods (e.g., 

medical laboratory testing, point-of-care testing, patient self-testing), we 

created a cleaning algorithm for INR records. Before applying the algorithm, 

first, each INR record was examined to identify and exclude any INR record 

whose INR lab value was missing. Then the INR cleaning algorithm was 

applied (Figure 4.6). 

According to the algorithm, we first removed all INR values we considered 

technically not acceptable according to the AHC’s laboratory guidelines (i.e., 

0.9 > INRs > 10). Then we took the next steps of the algorithm. If all INR 

No. of Medications 1 2 3 4 5 6 

No of Subjects 75282 16441 3049 358 20 1 

Figure 4.6. INR records cleaning algorithm. 
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records for a single subject in a single day differed (i.e., difference between 

minimum INR and maximum INR for the same day) by less than acceptable 

measurement variance of 0.5 INR-units (Rasmussen, 2012), then all INR 

records for that subject for that day were marked acceptable by the algorithm 

and the mean of the INR records was calculated representing INR value for 

the day. For all other days, median INR for each day was calculated. The rate 

of INR record completeness for the AHC Base Database is 77.03%. The 

subjects with INR records had 19.17 INR records on average.  

4.2.2.) WiAD Database and Data Load 

The next step in the process of developing a research anticoagulation 

database was to load the quality controlled and transformed data into a 

working database now called "WiAD" standing for "Wisconsin 

Anticoagulation/Anti-clotting Database". The database was implemented in a 

MySQL Server and i2b2. Two specifics tasks were undertaken in this process: 

designing data models consistent with the research needs and also making 

some vocabularies and ontologies across the data models to make sure that 

the queries run against the implemented databases would consistently return 

the data meeting the research oriented criteria. 

4.2.2.1.) MySQL Database 

WiAD was implemented in MySQL Server as one of its database 

management systems. The database could be queried directly through the 

MySQL server or it could be done using a tool called WiAD-Miner (explained 

in section 4.3.4). The data model of WiAD on the MySQL server is depicted in 

Figure 4.7. In this star schema, table “patients” is the core table which 
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basically stores non-longitudinal attributes of the subjects (e.g., Gender, Age, 

and Race). The other tables store the subjects’ longitudinal attributes. 

4.2.2.2.) i2b2 Database 

Our anticoagulation/anticlotting research database “WiAD” was also 

implemented in i2b2. The data model provided in the i2b2 database is called 

“star schema” where tables are connected as a star. Figure 4.8 shows the star 

schema consisting of Observation Fact surrounded by Patient Dimension, 

Visit Dimension, Concept Dimension, and Provider Dimension for the WiAD 

database. 

Figure 4.7. Entity Relationship (ER) Model of the WiAD’s MySQL Database. 
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In this schema, the Observation Fact table represents a patient object and 

other four dimensions represent its attributes such as who (patient 

information), when (dates), what (ontology for clinical patients' data) and 

where (hospital or treatment facility), respectively.  

Table 4.21. Definitions of the concepts of the WiAD’s i2b2 data model. 

Concept Definition 

surrogate_id Patient unique identification number 
encounter_num Patient visit number (surrogate_id + day) 

concept_cd 
Code for observation of interest (i.e., morbidity, 
medications, lab test) 

provider_id Provider unique identification number 
day Starting date-time of observation (i.e. “DAY”) 
concept_path Ontology path for concepts 
concept_id Unique identification number for concepts 
concept_name Actual name of the concept 
location Zipcode of the provider 

 

Figure 4.8. WiAD's i2b2 Data Model. 
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In i2b2, ontology represents a data model of a target domain. Ontology is 

stored in Concept Dimension table, which contains a symbolic name of an 

individual attribute (Concept ID) and a path from a root of ontology to an 

individual attribute (Concept Path). Every attribute is allowed to have only one 

conceptual path, so that ontology in the i2b2 includes no multiple inheritance. 

The following table provides definitions for some of the specific concepts of 

the WiAD’s i2b2 data model. 

The following table (Table 4.22) details the WiAD’s i2b2 ontology. 

Table 4.22. Hierarchical structure of the WiAD’s i2b2 ontology. 

Demographics 
Demographics\Age\ 
Demographics\Gender\ 
Demographics\Gender\Female\ 
Demographics\Gender\Male\ 
Demographics\Height\ 
Demographics\Patient Zipcode\ 
Demographics\Provider Zipcode\ 
Demographics\Race\ 
Demographics\Race\African American\ 
Demographics\Race\American Indian or Alaskan Native\ 
Demographics\Race\Asian\ 
Demographics\Race\Hispanic\ 
Demographics\Race\Not Asked\ 
Demographics\Race\Null\ 
Demographics\Race\Other\ 
Demographics\Race\Pacific Islander\ 
Demographics\Race\Unknown\ 
Demographics\Race\White\ 
Demographics\Tobacco Use\ 
Demographics\Weight\ 

Morbidity 
Morbidity\Diagnosis\ 
Morbidity\Diagnosis\Atherosclerosis of Aorta\ 
Morbidity\Diagnosis\Atrial Fibrillation\  
Morbidity\Diagnosis\Atrial Flutter\ 
Morbidity\Diagnosis\Bleeding\   
Morbidity\Diagnosis\Coronary Artery Disease\ 
Morbidity\Diagnosis\Deep Vein Thrombosis\ 
Morbidity\Diagnosis\Diabetes Mellitus\ 
Morbidity\Diagnosis\Heart Failure\ 
Morbidity\Diagnosis\Hypertension\ 
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Morbidity\Diagnosis\Myocardial Infarction\ 
Morbidity\Diagnosis\Peripheral Artery Diseases\ 
Morbidity\Diagnosis\Pulmonary Embolism\ 
Morbidity\Diagnosis\Stroke\ 
Morbidity\Procedure\ 
Morbidity\Procedure\Heart Valve Replacement\ 
Morbidity\Diagnosis\Orthopedic Procedures\ 

Medications 
Medications\Anticoagulation Agent\Abciximab 
Medications\Anticoagulation Agent\Clopidogrel\ 
Medications\Anticoagulation Agent\Dabigatran\ 
Medications\Anticoagulation Agent\Dipyridamole\ 
Medications\Anticoagulation Agent\Eptifibatide\ 
Medications\Anticoagulation Agent\Heparin\ 
Medications\Anticoagulation Agent\Ticlopidine\ 
Medications\Anticoagulation Agent\Tirofiban\ 
Medications\Anticoagulation Agent\Warfarin\ 
Medications\Interacting Medication\Amiodarone\ 
Medications\Interacting Medication\Aspirin\ 
Medications\Interacting Medication\Atrovastatin\ 
Medications\Interacting Medication\Fluvastatin\ 
Medications\Interacting Medication\Lovastatin\ 
Medications\Interacting Medication\Pravastatin\ 
Medications\Interacting Medication\Rosuvastatin\ 
Medications\Interacting Medication\Simvastatin\ 

Lab Test 
Labe Test\INR\ 

 

4.2.2.3.) Ontology issues 

Usually in clinical datasets, there exist different data types in data which can 

each be supported by a separate dictionary such as the ones we have 

developed for the AHC dataset. The advantage of using ontologies and 

dictionaries is that they help standardize raw data and also add logical 

hierarchical structure. In the case of i2b2, these are essential component of its 

ontology too. In the ideal situation and with the aim of interoperability, the data 

are mapped to reference standard dictionaries and ontologies. With the use of 

reference standard dictionaries and ontologies (e.g., Drug Bank), we could 

subgroup data types then support data elements across all data sources. 
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Even though there are different reference dictionaries and ontologies to use 

for normalizing and standardizing data (e.g., ICD-9, CPT, LOINC, NDC), the 

standard ontologies used are largely based on the data available. For the 

AHC dataset, our diagnosis data are coded in ICD-9, so that is the hierarchy 

we use in our ontology. The same holds true for procedures. With our 

medication and laboratory data, it is not coded in terminology with a standard 

hierarchy, so we had to organize the data using other locally developed 

dictionaries.       

4.2.3.) Data Analysis Methods and Tools 

As introduced, WiAD is a longitudinal database which includes subjects’ 

characteristics, treatment plans and outcomes that have been at multiple 

follow-up times. A longitudinal database generally provides multiple or 

repeated measurements and records on each subject. Accordingly and given 

that such repeated measurements and records are correlated within subjects, 

there are needs for special analysis and inference techniques for a 

longitudinal dataset. Although longitudinal data are very beneficial but there 

challenges in using such data which in some cases are not without cost. 

There are several challenges posed (Heagerty, 2014):  

- Participants follow-up. There is always the possibility of bias as the 

retrospective longitudinal EMR data might include the data of subjects who 

might have incomplete follow-up or drop-out during their treatment periods. 

Accordingly, the analysis of such data requires special attention to make sure 

that the extracted subset of the data meets the assumptions of the study that 

it is going to be used for. 
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- Analysis of correlated data. Given the nature of the longitudinal of EMR data, 

we need to use statistical methods that can account for the intra-attributes 

and /or intra-subjects correlations.  

- Time-varying covariates. Although longitudinal data provide the opportunity 

to study the association between the changes in one subject’s attribute by 

changes in other attributes or outcome of interest, the direction of causality 

can be complicated by feedback between the attributes.   

In the following section, some of the aspects of the longitudinal WiAD data is 

presented.  

4.2.3.1.) Landscape of the WiAD Data 

In the previous sections, it was explained the methods that we have applied to 

clean and quality control some of the longitudinal aspects of the WiAD data. 

However, there are some aspects of the data that should be managed and 

adjusted based on each study’s goals and design. For instance, one of the 

potential cross-attribute studies in the WiAD could be to study the correlation 

between the changes in warfarin doses and the subjects’ INR values. 

Figure 4.9.Warfarin dose changes versus INR values changes for two 
WiAD’s subjects. 
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However, the fact is that longitudinal data patterns for these attributes are 

very complex and affected by different factors so that it requires applying 

some specific methods to extract the data records which are appropriate for 

such a study. Figure 4.9 demonstrates the warfarin recorded doses versus 

INR recorded values for two different WiAD’s subjects.     

Taking into consideration that INR is used to monitor different anticoagulation 

agents and also the fact that a given patient under anticoagulaton therapy 

might receive different types of anticoagulation agents during his/her 

treatment period depending on his/her treatment condition (e.g., ambulatory, 

in-patient care or surgical procedure), it is important to find the desired 

warfarin exposure periods in the EMR data and extract the associated data. 

Given this complexity, we have developed some algorithms which help extract 

data from WiAD based on desired longitudinal patterns such as treatment 

periods (e.g. fixed time or medical procedure periods), treatment indications 

which require different target therapeutic INR ranges, and interval and 

frequency between successive observed dose records or INR values. These 

features have been implemented in WiAD-Miner explained in the next section. 

4.2.3.2.) WiAD-Miner 

An interactive data profiling and population "segmentation" tool for WiAD 

(WiAD-Miner) has been developed in R (R Core Team, 2014) using RStudio 

(RStudio, 2014). WiAD-Miner (Figure 4.10) which also has a web application 

version includes all the profiling, outcome metric, and related data analysis 

functions for anticoagulation agents. WiAD-Miner includes a cohort selection 

tool to profile and identify patient subpopulations by any or a combination of 

patients' characteristics including gender, age group, race, patient's residence 
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zipcode, provider's zipcode, medication, medication exposure, duration of 

treatment, number of dose records, frequency of INR values, medication 

indication, and comorbidities. WiAD-Miner presents a clear view of each 

extracted subset by producing statistical characteristics and visual profiling 

and allows adjustment of various parameters such as the medication 

exposure period definition, triggering a re-profiling and thereafter, re-

calculation of outcome metrics. 

4.2.4.) Estimating Parameters for PK/PD 

Our in silico simulation model takes advantage of Hamberg's PK/PD model 

(Hamberg, 2007) for individualization of warfarin therapy. As introduced in 

Chapter 3, Hamberg et al. have characterized the relationship between 

warfarin dose and international normalized ratio (INR) response and they 

have identified CYP2C9 genotype and age as predictors for S-warfarin 

clearance, and VKORC1 genotype as a predictor for warfarin sensitivity. Our 

in silico platform is able to take advantage of domain knowledge and integrate 

population characteristics such as genotype distributions if they are not 

provided for the study populations. Accordingly and given that WiAD originally 

Figure 4.10. A screenshot of the WiAD-Miner’s interface. 



www.manaraa.com

181 

 

 

 

did not include genotype information, we have derived distribution of required 

genotypes for our study populations from some studies such as the one 

conducted by Scott (2010). A recent study by Scott (2010) has provided the 

allele frequencies of some of the principal genes known to influence 

interindividual warfarin dose variability (e.g., CYP2C9 and VKORC1) in 

African-American, Asian and White populations. We have used these 

information to impose population genotype distribution information into our in 

silico platform. Table 4.23 summarizes the CYP2C9 allele and genotype 

frequencies.  

Table 4.23. CYP2C9 Genotype Frequencies (Scott, 2010). 

CYP2C9 African-American Asian White 

Extensive Metabolizer 

*1/*1 75.5 86.3 66 

Intermediate Metabolizer 

*1/*2 4.3 3.9 15.1 

*1/*3 3.3 6.9 9.4 

*1/*5 2.7 0 0 

*1/*6 1.7 0 0 

*1/*8 8.7 1 0 

*1/*11 2 0 0.9 

Poor Metabolizer 

*2/*2 0.3 1 6.6 

*2/*3 0.3 0 1.9 

*2/*8 0 0 0 

*3/*3 0 0 0 

*3/*5 0 0 0 

*3/*8 0 1 0 

*3/*11 0.3 0 0 

*5/*6 0.3 0 0 

*8/*11 0.3 0 0 
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Table 4.24 demonstrates the VKORC1G 1639G>A allele frequencies.            

Table 4.24. VKORC1 Genotype Frequencies (Scott, 2010). 

VKORC1 
1639G>A 

African-American 
(%) 

Asian 
(%) 

White 
(%) 

G/G 80.3 22.5 36.8 

G/A 17.7 21.6 45.3 

A/A 2 55.9 17.9 

 

Table 4.25 summarizes the combined CYP2C9 and VKORC1 genotype 

frequencies for some of the study populations such as African-American, 

Asian and White. As depicted in the table, a majority of White and Asian 

individuals carry a variant of CYP2C9 and VKORC1 compared with African-

American.   

Table 4.25. Combined CYP2C9 and VKORC1 Genotype Frequencies (Scott, 
2010). 

CYP2C9 VKORC1 
1639G>A 

African-American 
(%) 

Asian 
(%) 

White 
(%) 

Extensive 

Metabolizer 

G/G 63.4 20.6 41.5 

G/A 0 0 0 

A/A 1.4 55 13.3 

Intermediate 

Metabolizer 

G/G 20.3 7.9 10.3 

G/A 2.9 3 10.4 

A/A 0.7 1 4.7 

Poor 

Metabolizer 

G/G 0 2 4.7 

G/A 0.4 0 3.7 

A/A 0 0 0 

 

4.3.) Results 

This effort has resulted in an EMR-based longitudinal 

anticoagulation/anticlotting database, WiAD, using Aurora Health Care’s 

electronic medical records. This database is a seminal translational 

anticoagulation research tool that support US-prioritized "Secondary Use" of 



www.manaraa.com

183 

 

 

 

electronic medical records to improve health care and comparative 

effectiveness research studies. The database could be used to develop and 

derive conditional parametric models for WiAD-based studies such as studies 

that are presented in Chapters 5 and 6.  

4.4.) Conclusion and Future Work 

This effort has shown that EMR longitudinal data is a rich resource to develop 

research-grade databases. Our effort is aligned with current national 

developments such as PCORnet aiming to leverage the secondary use of 

EMR data for research purposes. As presented in the next chapters, WiAD 

database has significant potential for comparative effectiveness research and 

conducting patient-centered outcomes research. In future, we plan to improve 

the database by including more cardiovascular associated patient 

characteristics and also embedding more robust data transforming and 

extraction algorithms.   



www.manaraa.com

184 

 

 

 

4.5.) References: 
Bayley, K. B., Belnap, T., Savitz, L., Masica, A. L., Shah, N., & Fleming, N. S. 

(2013). Challenges in using electronic health record data for CER: experience 

of 4 learning organizations and solutions applied. Medical care, 51(8 Suppl 3), 

S80-86. 

 

Centers for Disease Control and Prevention (CDC). (2014). International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). 

Retrieved June15, 2014, from http://www.cdc.gov/nchs/icd/icd9cm.htm 

 

Clinical Data Research Networks(CDRNs). (2014). Patient-Centered 

Outcomes Research Institute. Retrieved September 10, 2014 from 

http://www.pcori.org/content/clinical-data-and-patient-powered-research-

networks-awarded-projects 

 

Cruz-Correia, R. J., Rodrigues, P., Freitas, A., Almeida, F. C., Chen, R., & 

Costa-Pereira, A. (2010). Data quality and integration issues in electronic 

health records. Information discovery on electronic health records, 55-95. 

 

Elkin, P. L., Trusko, B. E., Koppel, R., Speroff, T., Mohrer, D., Sakji, S., et al. 

(2010). Secondary use of clinical data. Studies in health technology and 

informatics, 155, 14-29. 

 

Heagerty P.J. Longitudinal Data Analysis. Retrieved October 9, 2014, from 

http://faculty.washington.edu/heagerty/ 2014 

 

Hristidis, V. (2010). Information discovery on electronic health records: CRC 

Press. 

 

ICD9-11-CM. (2014). Centers for Disease Control and Prevention. Retrieved 

October 20, 2014 from http://www.cdc.gov/nchs/icd/icd9cm_maintenance.htm 

 

Maskin, L. P., Attie, S., Setten, M., Rodriguez, P. O., Bonelli, I., Stryjewski, M. 

E., et al. (2010). Accuracy of weight and height estimation in an intensive care 

unit. Anaesthesia and intensive care, 38(5), 930-934. 

 

Muthalagu, A., Pacheco, J. A., Aufox, S., Peissig, P. L., Fuehrer, J. T., Tromp, 

G., et al. (2014). A rigorous algorithm to detect and clean inaccurate adult 

height records within EHR systems. Applied clinical informatics, 5(1), 118-

126. 

 



www.manaraa.com

185 

 

 

 

Prokosch, H. U., & Ganslandt, T. (2009). Perspectives for medical informatics. 

Reusing the electronic medical record for clinical research. Methods of 

information in medicine, 48(1), 38-44. 

 

R Core Team. (2014). R: A language and environment for statistical 

computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved 

August 1, 2014, from http://www.R-project.org/ 

 

Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current 

approaches. IEEE Data Eng. Bull., 23(4), 3-13. 

 

Rasmussen, R. S., Corell, P., Madsen, P., & Overgaard, K. (2012). Effects of 

computer-assisted oral anticoagulant therapy. Thrombosis journal, 10(1), 17. 

 

RStudio. (2014). RStudio: Integrated development environment for R (Version 

0.98.1091) [Computer software]. Boston, MA. Retrieved November 6, 2014 

from http://www.rstudio.com/ 

 

Safran, C., Bloomrosen, M., Hammond, W. E., Labkoff, S., Markel-Fox, S., 

Tang, P. C., et al. (2007). Toward a national framework for the secondary use 

of health data: an American Medical Informatics Association White Paper. 

Journal of the American Medical Informatics Association: JAMIA, 14(1), 1-9. 

 

Scott, S. A., Khasawneh, R., Peter, I., Kornreich, R., & Desnick, R. J. (2010). 

Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and 

ethnic groups. Pharmacogenomics, 11(6), 781-791. 

 

Selby, J. V., Beal, A. C., & Frank, L. (2012). The Patient-Centered Outcomes 

Research Institute (PCORI) national priorities for research and initial research 

agenda. JAMA : the journal of the American Medical Association, 307(15), 

1583-1584. 

 

U.S. Census Bureau. Statistical Abstract of the United States: 2012. (2014). 

Retrieved July 16, 2014 from 

https://www.census.gov/compendia/statab/2012/tables/12s0209.pdf 

 

Weiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic 

health record data quality assessment: enabling reuse for clinical research. 

Journal of the American Medical Informatics Association : JAMIA, 20(1), 144-

151. 

 

 

  



www.manaraa.com

186 

 

 

 

Chapter 5: In Silico Translational Research Pharmacogenetic Comparative 
Effectiveness Studies 
 
5.1.) Introduction 
5.2.) CoumaGen-I Clinical Trial Simulation 

5.2.1.) Background and Objective 

5.2.2.) Methods 

5.2.2.1) Study Design 

5.2.2.2) Clinical Avatar Populations 

5.2.2.3.) Measuring Outcome Metrics 

5.2.2.4.) Clinical Trial Simulations  

5.2.3.) Results 

5.2.4.) Conclusion 

5.3.) CoumaGen-II Clinical Trial Simulation 

5.3.1.) Background and Objective 

5.3.2.) Methods 

5.3.2.1) Study Design 

5.3.2.2) Clinical Avatar Populations 

5.3.2.3.) Measuring Outcome Metrics 

5.3.2.4.) Clinical Trial Simulations  

5.3.3.) Results 

5.3.4.) Conclusion  

5.4.) Aurora Health Care Anticoagulation Therapy Simulation 

5.4.1.) Background and Objective 

5.4.2.) Methods 

5.4.2.1) Study Design 

5.4.2.2) Clinical Avatar Populations 

5.4.2.3.) Measuring Outcome Metrics 

5.4.2.4.) Clinical Trial Simulations  

5.4.3.) Results 

5.4.4.) Conclusion 

5.5.) References 

 

  



www.manaraa.com

187 

 

 

 

5.1.) Introduction 

We have developed an in silico pharmacogenetic PC-CER framework for 

anticoagulation therapy. The framework includes options to simulate patient 

populations ("Clinical Avatars"), multiple initial dosing protocols including PG-

based and non PG-based, multiple dose adjustment and maintenance 

protocols, PK/PD modeling and prediction of various types of outcome 

measures. We have validated the framework against two major warfarin 

clinical trials, CoumaGen-I and CoumaGen-II (Anderson, 2007a, 2012b). 

Then, we have used our highly adaptable in silico framework to conduct 90-

day anticoagulation therapy simulations for the Aurora Heath Care (AHC) 

state-wide warfarin patient population using a collection of warfarin dosing 

protocols to study comparative effectiveness and to identify different optimal 

protocols depending on subpopulations defined by patient characteristics. 

5.2.) CoumaGen-I Clinical Trial Simulation 

5.2.1.) Background and Objective 

The details of this study were published by Fusaro (2013) in the journal 

Circulation. In this study, the accuracy of the clinical trial simulator of our in 

silico PC-CER framework was demonstrated by reproducing the CoumaGen-I 

clinical trial outcomes (“CoumaGen-I Simulation 1”), and then the simulator 

was used to evaluate a new dosing protocol (“CoumaGen-I Simulation 2”), to 

determine whether this new study design was significantly more beneficial for 

the same population.  

 

 



www.manaraa.com

188 

 

 

 

5.2.2.) Methods 

5.2.2.1) Study Design 

- The original study. The original CoumaGen-I clinical trial study (Anderson, 

2007) was designed as a prospective, randomized study comparing PG-

based and standard empirical dosing in patients being initiated on oral 

anticoagulation. The study objectives were prospectively to validate a PG-

based dosing algorithm (Anderson, 2007) and to assess its impact on INR-

based efficacy and safety end points. 

In the original study, the inclusion criteria to recruit subjects were as follows: 

Figure 5.1. Study design for the original CoumaGen-I clinical trial. PG: 
Pharmacogenetic arm, STD: Standard arm.  
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age ≥18 years and an indication for anticoagulation with a target INR of 2 to 3. 

And the subjects with the following characteristics were excluded: women who 

were pregnant, lactating, or of child-bearing potential, those taking rifampin 

within 3 weeks, or patients with comorbidities precluding standard dosing 

(e.g., advanced physiological age, renal insufficiency/creatinine >2.5 mg/dL, 

hepatic insufficiency, terminal disease). Then, the 200 qualified subjects 

underwent blind randomization to the pharmacogenetic (PG) or standard 

(STD) arm. The study recruited 101 patients into the PG arm and 99 patients 

into the standard clinical STD arm. Figure 5.1 illustrates the study design of 

the original clinical trial.  

- The simulation study. In this study, the two following simulations were 

designed and conducted: “CoumaGen-I Simulation 1” and “CoumaGen-I 

Simulation 2”. For each of these, with the use of a Bayesian Network Model 

(BNM), a sufficient number of clinical avatars (n=200000) was created to 

conduct 1000 simulations. For each of the 1000 simulations, 101 avatars for 

the PG arm and 99 for the STD arm were randomly recruited from this large 

clinical avatar population. Then, following the specific dosing protocol for each 

arm explained in the following sections, daily dose and INR for each avatar for 

that arm for 90 days were predicted. 

CoumaGen-I Simulation 1 followed the dosing protocol as specified in the 

original CoumaGen-I clinical trial (Anderson, 2007; Figure 5.1). The standard 

arm dosing followed the 10-mg warfarin nomogram from Kovacs (2003) for 

days 1 and 2 followed by dose adjustment based on INR according to the 

Kovacs (2003) protocol for days 3 to 7. For days 8 to 90, CoumaGen-I used 

the Intermountain Healthcare warfarin dosing algorithm. The CoumaGen-I 
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pharmacogenetic arm dosing followed a dosing algorithm which required both 

clinical and genotype (i.e., CYP2C9 and VKORC1) information to calculate 

doses for days 1 and 2. Like the original study, the initial doses were followed 

by a dose adjustment based on INR by multiplying standard arm changes by 

a pharmacogenetic algorithm coefficient for days 3 to 7. The pharmacogenetic 

algorithm coefficient was defined as the ratio of the estimated individual 

weekly dose determined by the pharmacogenetic algorithm to the standard 

weekly dose of 35 mg. For days 8 to 90, CoumaGen-I used the Intermountain 

Healthcare warfarin dosing protocol. 

Figure 5.2. The study design of the CoumaGen-I Simulation 1 and 2. 
Black text represents new features compared to the original 

CoumaGen-I study, whereas gray text represents those features in 
common with the original study as depicted in Figure 5.1. PG: 

Pharmacogenetic arm, STD: Standard arm.   

A. CoumaGen-I Simulation 1                            B. CoumaGen-I Simulation 2 
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The design of the CoumaGen-I Simulation 2 was different from the original 

clinical trial. It was conducted using a third dosing protocol (nomogram) 

offered by Wilson (2007). In this study, the same starting doses were used for 

days 1 to 2 as in the original CoumaGen-I trial, 10-mg/d for the standard arm 

and 2 times the pharmacogenetic dose for the pharmacogenetic arm. For 

days 3 to 90, the Wilson protocol was used to increase or decrease the dose 

proportionally based on low or high INR values, respectively. The following 

figure (Figure 5.2) illustrates the design of the two simulation studies. 

5.2.2.2) Clinical Avatar Populations 

With regard to the BNM used for creating clinical avatars in this study, some 

consideration were made as the original CoumaGen-I’s individual patients’ 

information were not available. Taking into consideration the subjects’ 

characteristics required for the dosing algorithms used in this study, the prior 

probabilities used for the study’s BNM were based on the statistical 

characterization of the patient population including age, sex, weight, height, 

race, body surface area (calculated from height and weight), smoking status, 

deep vein thrombosis status, amiodarone use status, and genotypes for 

CYP2C9*2, CYP2C*3, and VKORC1. The CoumaGen-I trial data used age, 

sex, weight, height, deep vein thrombosis, smoking status, and genotypes as 

their variables. In the simulation study, some other required prior probabilities 

(e.g., amiodarone status) for the BNM were estimated by using data from the 

Centers for Disease Control and Prevention and the 2000 US Census. The 

extracted prior probabilities were mostly for whites as about 95% of the 

original CoumaGen-I trial’s subjects were white.  



www.manaraa.com

192 

 

 

 

Another challenge in developing a BNM for this study which helped produce 

physiologically realistic clinical avatars was the lack of joint conditional 

probability distributions for the characteristics. To deal with this case, some 

external data and information sources were used such as the US Census 

2007 to 2008 Table 209 (http://www. 

census.gov/compendia/statab/2012/tables/12s0210.pdf) which details height 

and weight distributions as functions of age and sex. The extracted normal 

distributions from the above sources were transformed to match the actual 

population in the CoumaGen-I trial. For instance, the distributions for subjects 

40 to 49, 50 to 59, and 60 to 69 years of age were z-transformed and scaled 

according to the mean and standard deviation for the CoumaGen-I trial 

pharmacogenetic and standard arms, respectively. For use in the BNM, then 

a dependency table by sampling from these distributions and calculating the 

percentages for each age/sex group was developed. The BNM was 

implemented in TETRAD IV (Scheines, 1998) to produce the clinical avatar 

populations for the both Simulations 1 and 2. 

5.2.2.3.) Measuring Outcome Metrics 

The primary outcome metric was Percent Time INR in Therapeutic Range 

(“TTR”). Consistent with the original CoumaGen-I study, TTR was defined as 

the percentage of time an individual avatar had an INR between 1.8 and 3.2 

during the 90-day simulation. Although our simulator could calculate daily INR 

values, only INRs on those days in which the INR would have been checked 

in the clinic according to the specific protocol were considered. 
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5.2.2.4.) Clinical Trial Simulations  

As stated in previous sections, in the original CoumaGen-I randomized 

controlled trial, the 200 subjects were randomly assigned to two PG (n=101) 

and STD (n=99) arms. Accordingly, in the Simulation 1 and 2 studies, the 

200,000 clinical avatars were also randomly sampled to recruit 101 and 99 

avatars for the PG and the STD simulation arms. The number of created 

avatars provided the opportunity to create 1000 parallel arms for simulations. 

Then daily dose and INR for each avatar were predicted following a specific 

protocol for that arm for 90 days. The predicted doses, INR, INR-monitoring 

frequency, and population statistics for each clinical trial simulation and 

across all 1000 simulations were recorded to calculate and produce the mean, 

standard deviation, and probability value (unpaired t test) for TTR for each 

study arm and for the aggregated populations from the 1000 clinical trial 

simulations. The simulations produced predictions were then compared with 

the CoumaGen-I results. The simulations were implemented in R (R Core 

Team, 2013) and run on the affiliated institute’s high performance computing 

environment.  

5.2.3.) Results 

Developing a BNM and then generating clinical avatars were one of the first 

steps taken in this study. Table 5.1 demonstrates the characteristics of the 

clinical avatar populations generated for both PG and STD simulation arms 

versus the characteristics of the PG and STD arms’ populations in the original 

CoumaGen-I study.  

A few tests were done to show that the clinical avatar populations generated 

based on the BNM were statistically similar to the original CoumaGen-I 
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population. As depicted in Table 5.1, the distribution of the characteristics 

across the PG arms and STD arm are very comparable and statistical test 

shows no significant difference (P >0.05). The variable dependency 

embedded in the BNM of the populations were also tested to see if they also 

persisted in the simulated clinical avatar populations. To do so, a log-linear 

model was fitted to all relevant associations and probability values by using 

the Pearson χ2 statistic were calculated. The test indicated that there were no 

significant differences (P >0.05) between the dependencies in the clinical 

avatar populations and the original CoumaGen-I populations (Table 5.1). In 

addition, it was tested to make sure that the non-embedded dependencies in 

the BNM did not exist in the clinical avatar populations. 

Table 5.1. Characteristics of the subjects in the original CoumaGen-I study 
versus that of Clinical Avatars generated for both PG and STD arms. DVT: 
deep vein thrombosis; PG: pharmacogenetic arm, SD: standard deviation, 

STD: standard clinical arm (Fusaro, 2013). 

Characteristic 
CoumaGen-I Original Clinical Avatars 

PG Arm STD Arm PG Arm STD Arm 

n 101 99 101 99 

Age, y (mean) 63.2 58.9 62.5 58.3 

Male, % 49.5 56.6 51.3 55.1 

Weight, kg, mean±SD 92.1±24.6 94.7±24.2 89.8±24.3 91.9±24.3 

DVT, % 18.8 28.3 18.6 28.6 

White, % 94.1 94.9 94 95 

CYP2C9*2, % 

   CC 

   CT 

   TT 

 

82 

18 

0 

 

76.5 

23.5 

0 

 

82.2 

17.8 

0 

 

76.7 

23.3 

0 

CYP2C9*3, % 

   AA 

   AC 

   CC 

 

89 

10 

1 

 

87.6 

11.3 

1 

 

88.9 

10.2 

1 

 

87.9 

11.1 

1 

VKORC1 1173, % 

   G/G 

   G/A 

   A/A 

 

50.5 

35.4 

14.1 

 

34.7 

50 

15.3 

 

50.5 

35.6 

13.9 

 

34.6 

50.2 

15.2 
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The accuracy of the clinical trial simulator of our in silico PC-CER framework 

was validated by simulating the original CoumaGen-I clinical trial through 

conducting CoumaGen-I Simulation 1 (Figure 5.1 and 5.2A). 

The CoumaGen-I Simulation 1 reproduced the primary TTR outcome of the 

original CoumaGen-I trial (Table 5.2). It predicted a mean TTR of 70.5% and 

72.0% in the STD and PG arms, respectively. Similar to the original 

CoumaGen-I trial, the difference between the mean TTRs was not significant 

(P >0.05). The results of the CoumaGen-I Simulation 1 showed no statistical 

difference between predicted and actual TTRs for CYP2C9 extensive 

metabolizer, intermediate metabolizer, and poor metabolizer subsets (P 

>0.05). Although the original CoumaGen-I showed a significant 9.8% 

reduction in out-of-range INRs for the wild type and multiple variants subgroup 

in the PG arm, CoumaGen-I Simulation 1 indicated a nonsignificant 2.7% 

reduction in out-of-range INRs for the similar groups. 

Through the second simulation, CoumaGen-I Simulation 2, it was tested if a 

modification to PG and STD arms of the original CoumaGen-I dosing 

algorithms would result in a significant change in outcomes of the two arms. 

As depicted in Figure 5.2B, all model and simulation components of the 

CoumaGen-I Simulation 1 (i.e., clinical avatars, initial dosing, PK/PD 

parameters, and TTR outcome calculations) remained the same with the 

exception of the replacement of part of the original CoumaGen-I dosing 

protocol with the Wilson protocol (Wilson, 2007) for days 3 to 90. The 

simulation, CoumaGen-I Simulation 2, was run and the outcome metrics were 

calculated as in the Simulation 1 (Table 5.2).  
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Table 5.2. Percent Time INR in Therapeutic Range (TTR) for some 
subpopulations in 1000 simulated trials of CoumaGen-I Simulations 1 and 2. 

Subpopulation 
CoumaGen-I Simulation 1 CoumaGen-I Simulation 2 

PG Arm STD Arm PG Arm STD Arm 

All Avatars, %, mean±SD 72±26.6 70.5±26.8 78.8±11.9 73.7±13.6 

CYP2C9, %, mean±SD 

     Extensive Metabolizer 

     Intermediate Metabolizer 

     Poor Metabolizer 

 

76±23.6 

72.4±26 

65.6±29.9 

 

73.6±21.8 

72.4±26.2 

65.9±29.6 

 

85.6±10.2 

76.9±10.4 

71.7±11.2 

 

85.6±9.9 

75.4±10 

63.2±12.1 

 

The mean TTR for the PG arm was significantly higher than the STD arm in 

the CoumaGen-I Simulation 2 (78.8% versus 73.7%; P< 0.05, respectively), 

demonstrating that the Wilson protocol, which adjusts dose based on 

percentage change, predicted better management of the clinical avatars and 

was able to achieve a stable TTR for a longer period of time.  

The CoumaGen-I Simulation 2 PG protocol resulted in a higher mean TTR 

across all the genotype subsets than the corresponding CoumaGen-I 

Simulation 1 PG protocol (Table 5.2). For all patients, the difference between 

the STD arms in the CoumaGen-I Simulation 1 and 2 was 3.1%, indicating 

similar TTR results despite different protocols. Conversely, the difference in 

TTR for the PG arm was 6.8% higher, indicating that the Wilson protocol was 

more accurate at maintaining a therapeutic dose within the 90-day clinical trial 

time window. The CoumaGen-I Simulation 2 also exhibited a smaller TTR 

standard deviation for each genotype subset than the CoumaGen-I Simulation 

1, indicating that the INR range was better controlled by the use of the Wilson 

protocol. 

5.2.4.) Conclusion                                                            

This study showed that the clinical trial simulator was useful to study and 
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evaluate anticoagulation therapy options and “provide evidence to optimize 

the clinical trial for patient efficacy and reduced risk” (Fusaro, 2013). 

5.3.) CoumaGen-II Clinical Trial Simulation 

5.3.1.) Background and Objective 

In this study, the accuracy of the clinical trial simulator of our in silico PC-CER 

framework was re-examined again by reproducing the CoumaGen-II clinical 

trial outcomes (“CoumaGen-II Simulation 1”), and then the simulator was used 

to evaluate a new dosing protocol (“CoumaGen-II Simulation 2”), to determine 

whether this new study design was significantly more beneficial for the same 

population.  

5.3.2.) Methods 

5.3.2.1) Study Design 

- The original study. The original CoumaGen-II clinical trial (Anderson, 2012) 

comprised 2 prospective clinical trial comparisons: (1) a blinded, randomized 

comparison of 2 refined PG warfarin dosing algorithms and (2) a clinical 

effectiveness comparison of PG-guided therapy with use of either PG 

algorithm with a parallel, standard (STD) dosing (Figure 5.3). The primary end 

points of interest were Percent Time INR in Therapeutic Range (TTR) and 

also percentage of out-of-range (OOR) INRs during up to 90 day treatment 

period. In the original study, the inclusion criteria to recruit subjects were as 

follows: age ≥18 years, and an indication for initiation of warfarin 

anticoagulation. And the subjects with the following characteristics were 

excluded: women who were pregnant, lactating, or of child-bearing potential, 

those taking rifampin within 3 weeks, or patients with comorbidities precluding 
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standard dosing (e.g., creatinine >2.5, hepatic insufficiency, active 

malignancy, advanced physiological age, expected survival <6 months); 

noncompliance risk; and those deemed inappropriate for PG-guided dosing 

for any other reason. 

Based on power calculations, the minimum recruitment target for the 

randomized, PG-guided comparison was set at 500 patients. All qualifying 

parallel control patients were included, anticipated to number >=1000.  

Eventually, 504 qualified subjects were recruited and underwent blind 

randomization to two PG arms; PG-1 and PG-2. The subjects for the 

standard-dosing arm were retrospectively identified by a query to the EMRs of 

3 hospitals. Patients ≥18 years of age initiating warfarin therapy with a 

Figure 5.3. Study design for the original CoumaGen-II clinical trial. 
PG: Pharmacogenetic arm, STD: Standard arm. 
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baseline and at least 1 follow-up INR level between days 3 and 14 were 

selected. The query resulted in identification and extraction of EMR records of 

1911 subjects for the STD arm. Figure 5.3 illustrates the study design of the 

original clinical trial. 

- The simulation study. In this study, the two following simulations were 

designed and conducted: "CoumaGen-II Simulation 1" and "CoumaGen-II 

Simulation 2". For each of these, with the use of a BNM method described in 

section 5.2.1.1, a sufficient number of clinical avatars was created to conduct 

1000 simulations for each of the three arms; PG-1 (n=257000), PG-2 

(n=247000), and STD (n=1900000). For each of the 1000 simulations, 257 

avatars for the PG-1 arm, 247 avatars for the PG-2 arm and 1099 avatars for 

the STD arm were randomly recruited from their associated generated clinical 

avatar populations. Then, following the specific dosing protocol for each arm 

explained in the following sections, daily dose and INR for each avatar for that 

arm for 90 days were predicted. 

CoumaGen-II Simulation 1 followed the dosing protocol as specified in the 

original CoumaGen-II clinical trial (Anderson, 2012; Figure 5.4). For the STD 

arm, it was assumed that retrospectively selected subjects in the original 

CoumaGen-II trial received warfarin standard initial dose of 5mg/day for days 

1 and 2 and then the doses were adjusted using the same standard INR-

based dose-modification algorithm developed and promoted by Intermountain. 

The CoumaGen-II PG-1 and PG-2 arms used modified versions of the IWPC 

(2009) dosing algorithm which required both clinical and genotype (i.e., 

CYP2C9 and VKORC1) information to calculate doses for days 1 and 2. Like 

the original study, the initial doses were followed by (a) a dose adjustment 
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algorithm based on INR according to the Kovacs (2003) protocol for days 3 to 

7 for PG-1 arm and (b) a dose adjustment algorithm based on Lenzini (2010) 

PG-based dosing algorithm for days 3 through 7 for PG-2 arm. For days 8 to 

90 in both PG-1 and PG-2 arms, the Intermountain Healthcare warfarin dosing 

protocol were used. 

The design of the CoumaGen-II Simulation 2 was different from the original 

clinical trial. It was conducted using a third dosing protocol (nomogram) 

offered by Wilson (2007). In this study, the same initial doses for days 1 to 2 

and the same adjustment doses for days 3 through 7 were used as in the 

original CoumaGen-II trial. For days 3 to 90, the Wilson protocol was used to 

Figure 5.4. The study design of the CoumaGen-II Simulation 1. Black text 
represents new features compared to the original CoumaGen-II study, whereas 

gray text represents those features in common with the original study as 
depicted in Figure 5.3. PG: Pharmacogenetic arm, STD: Standard arm. 
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increase or decrease the dose proportionally based on low or high INR 

values, respectively. The following figure (Figure 5.5) illustrates the design of 

the CoumaGen-II Simulation 2. 

5.3.2.2) Clinical Avatar Populations 

Similar to CoumaGen-I clinical trial simulation study (Section 5.2), for the 

BNM used for creating clinical avatars in this study, the same considerations 

were made as the original CoumaGen-II’s individual patients’ information were 

not available. Taking into consideration the subjects’ characteristics required 

for the dosing algorithms used in this study, the prior probabilities used for the 

study’s BNM were based on the statistical characterization of the patient  

Figure 5.5. The study design of the CoumaGen-II Simulation 2. Black text 
represents new features compared to the original CoumaGen-II study, 

whereas gray text represents those features in common with the original study 
as depicted in Figure 5.3. PG: Pharmacogenetic arm, STD: Standard arm. 
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population including age, sex, weight, height, race, body surface area 

(calculated from height and weight), smoking status, deep vein thrombosis 

status, amiodarone use status, and genotypes for CYP2C9*2, CYP2C*3, and 

VKORC1. The CoumaGen-II trial data used age, sex, weight, height, deep 

vein thrombosis, smoking status, and genotypes as their variables.  

In the simulation study, some other required prior probabilities (e.g., 

amiodarone status and genotype distributions) for the BNM were estimated by 

using some sources such as data from the Centers for Disease Control and 

Prevention, the 2000 US Census or some evidence on genotype distributions 

used for STD arm clinical avatar populations (e.g., Scott, 2010). The other 

details which were taken into for development of BNM in CoumaGen-I 

simulation study were also applied to this study too. The BNM was 

implemented in TETRAD IV (Scheines, 1998) to produce the clinical avatar 

populations for the both Simulations 1 and 2. 

5.3.2.3.) Measuring Outcome Metrics 

The primary outcome metric was Percent Time INR in Therapeutic Range 

(“TTR”) and Percent Out-Of-Range INR (“%OOR”). Consistent with the 

original CoumaGen-|I study, TTR was defined as the percentage of time an 

individual avatar had an INR between 1.8 and 3.2 during the 90-day 

simulation. Although our simulator could calculate daily INR values, only INRs 

on those days in which the INR would have been checked in the clinic 

according to the specific protocol were considered. 

5.3.2.4.) Clinical Trial Simulations  

As stated in previous sections, in the original CoumaGen-II randomized 

controlled trial, the 504 recruited subjects were randomly assigned to two PG 
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arms; PG-1 (n=257) and PG-2 (n=247). In addition, in the original study, 1911 

subjects were retrospectively recruited from the EMRs for the STD arm. 

Accordingly, in the Simulation 1 and 2 studies, the three clinical avatar 

populations were randomly sampled to recruit 257, 247 and 1911 avatars for 

the PG-1, the PG-2 and the STD simulation arms. The number of created 

avatars provided the opportunity to create 1000 parallel arms for simulations. 

Then daily dose and INR for each avatar were predicted following a specific 

protocol for that arm for 90 days. The predicted doses, INR, INR-monitoring 

frequency, and population statistics for each clinical trial simulation and 

across all 1000 simulations were recorded to calculate and produce the mean, 

standard deviation, and probability value (unpaired t test) for TTR for each 

study arm and for the aggregated populations from the 1000 clinical trial 

simulations. The simulations produced predictions were then compared with 

the CoumaGen-II results. The simulations were implemented in R (R Core 

Team, 2013) and run on the University of Wisconsin-Milwaukee’s high 

performance computing environment.  

5.3.3.) Results 

Table 5.3 demonstrates the characteristics of the clinical avatar populations 

generated for PG and STD simulation arms along with the characteristics of 

the PG and STD arms’ populations in the original CoumaGen-II study.  

A few tests were done to show that the clinical avatar populations generated 

based on the BNM were statistically similar to the original CoumaGen-II 

population. As depicted in Table 5.3, the distribution of the characteristics 

across the PG arms and STD arm are very comparable and statistical test 

show no significant difference (P >0.05). The variable dependencies 
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embedded in the BNM of the populations were also tested to see if they also 

persisted in the simulated clinical avatar populations. To do so, a log-linear 

model was fitted to all relevant associations and probability values by using 

the Pearson χ2 statistic were calculated. The test indicated that there were no 

significant differences (P >0.05) between the dependencies in the clinical 

avatar populations and the original CoumaGen-II populations (Table 5.3). In 

addition, it was tested to make sure that the non-embedded dependencies in 

the BNM did not exist in the clinical avatar populations. 

Table 5.3. Characteristics of the subjects in the original CoumaGen-II study 
versus that of Clinical Avatars generated for PG and STD arms. DVT: deep 
vein thrombosis; PG: pharmacogenetic arm, SD: standard deviation, STD: 

standard clinical arm. 

Characteristic 
CoumaGen-II Original Clinical Avatars 

PG-1 Arm PG-2 Arm STD Arm PG-1 Arm PG-2 Arm STD Arm 

n 257 247 1911 257 247 1911 

Age, y (mean) 61.3 59.9 51.5 60.9 59.4 51.1 

Male, % 46.3 47.6 48.5 46.9 48.3 49.1 

Weight, kg, mean±SD 93.1±23.9 92.3±24.5 91.3±28 92.1±23.1 92.9±23.5 90.9±27.5 

DVT, % 29.6 29.6 33.7 28.9 29.2 33.9 

White, % 95.3 95.6 91.4 95.6 96.1 91.1 

CYP2C9*2, % 

   CC 

   CT 

   TT 

 

79 

17.9 

2.7 

 

77.6 

20.3 

1.2 

 

NA 

NA 

NA 

 

79.5 

17.7 

2.8 

 

77.2 

20.9 

1.9 

 

78.3 

19.1 

2.6 

CYP2C9*3, % 

   AA 

   AC 

   CC 

 

86.3 

13.3 

0.4 

 

86.1 

13.1 

0.8 

 

NA 

NA 

NA 

 

85.9 

13.7 

0.4 

 

86.6 

13.1 

0.3 

 

86.2 

13.2 

0.6 

VKORC1, % 

   G/G 

   G/A 

   A/A 

 

32 

49.6 

18.4 

 

38.1 

47.5 

14.3 

 

NA 

NA 

NA 

 

31.5 

50.3 

18.2 

 

38.8 

46.7 

14.5 

 

35 

48.6 

16.4 

 

The accuracy of the clinical trial simulator of our in silico PC-CER framework 

was validated again by simulating the original CoumaGen-II clinical trial 

through conducting CoumaGen-II Simulation 1 (Figure 5.3 and 5.4). Similar to 
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the results of the original CoumaGen-II, the CoumaGen-II Simulation 1 study 

showed that the PG-2 dosing algorithm was noninferior compared with the 

PG-1 dosing algorithm at 1 and 3 months (P >0.05, Table 5.4). It also verified 

the same for %OOR INR at 1 and 3 months (P >0.05). 

Through the second simulation, CoumaGen-II Simulation 2, it was tested if a 

modification to PG and STD arms of the original CoumaGen-II dosing 

algorithms would result in a significant change in outcomes of the three arms. 

As depicted in Figure 5.5, all model and simulation components of the 

CoumaGen-II Simulation 1 (i.e., clinical avatars, initial dosing, PK/PD 

parameters, and TTR outcome calculations) remained the same with the 

exception of the replacement of part of the original CoumaGen-II dosing 

protocol with the Wilson protocol (Wilson, 2007) for days 8 to 90. The 

simulation, CoumaGen-II Simulation 2, was run and the outcome metrics were 

calculated as in the Simulation 1 (Table 5.4).  

Table 5.4. Time INR in Therapeutic Range (%TTR) and Out-Of-Range INR 
(%OOR) across the 1000 trials of CoumaGen-II Simulations 1 and 2. 

Outcome Metric 

CoumaGen-II Simulation 1 CoumaGen-II Simulation 2 

PG-1 

Arm 

PG-2 

Arm 

STD 

Arm 

PG-1 

Arm 

PG-2 

Arm 

STD 

Arm 

TTR, %, mean±SD 

1 month 

64.6± 

19.8 

62.9± 

17.6 

41.5± 

13.5 

68.2± 

10.9 

67.4± 

11.2 

55.1± 

13.4 

TTR, %, mean±SD 

3 months 

66.1± 

18.5 

64.5± 

19 

42.3± 

13.8 

70.4± 

9.3 

69.4± 

10.1 

56.5± 

11.8 

OOR, %, mean±SD 

1 month  

35.4± 

11.5 

37.1± 

11.4 

58.5± 

12.2 

31.8± 

8.6 

32.6± 

9.1 

44.9± 

7.8 

OOR, %, mean±SD 

3 months 

33.9± 

10.3 

35.5± 

10.7 

57.7± 

11.1 

29.6± 

6.4 

30.6± 

7.9 

55.1± 

7.8 

 

The 1-month and 3-month mean TTRs for the PG-1 and PG-2 arms were 

significantly higher than the STD arm in the CoumaGen-I Simulation 2 (70.4% 

and 69.4% versus 73.7%; P< 0.05, respectively), demonstrating that the 
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Wilson protocol, which adjusts dose based on percentage change, predicted 

better management of the clinical avatars and was able to achieve a stable 

TTR for a longer period of time.  

The CoumaGen-II Simulation 2 PG protocols resulted in a higher mean TTR 

across all the genotype subsets than the corresponding CoumaGen-II 

Simulation 1 PG protocol. The CoumaGen-II Simulation 2 also exhibited a 

smaller TTR standard deviation across all three arms than the CoumaGen-II 

Simulation 1, indicating that the INR range was better controlled by the use of 

the Wilson protocol. 

5.3.4.) Conclusion  

We have developed a pharmacogenetic clinical trial simulation framework for 

warfarin dosing and validated the framework against the CoumaGen-II clinical 

trial. We also demonstrated the utility of our framework by simulating the 

same clinical trials with the use of a relatively more aggressive dosing 

protocol and predict that the PG arms are likely to perform significantly better 

than the STD arm. The framework provides an opportunity to assess 

alternative strategies such as different dosing protocols, study population, or 

outcome metrics before applying them in real world. 

5.4.) Aurora Health Care Anticoagulation Therapy 

Simulation 

5.4.1.) Background and Objective 

The complexity of anticoagulation therapy and various existing treatment 

options especially the new PG-based dosing protocols create a serious barrier 

to hospitals of identifying and adopting an "optimal" anticoagulation treatment 
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plan for their heterogeneous patient population. To address this challenge, we 

designed a study to take advantage of our pharmacogenetic PC-CER in silico 

framework to simulate a number of anticoagulation therapy scenarios for the 

state-wide AHC patient population. Our approach included extraction of 

representative warfarin patient data from WiAD, collect and codify AHC's 

warfarin dosing protocols, run clinical simulations to compare the predicted 

outcomes of different dosing protocols including the AHC's, and then identify 

the overall best population-wide treatment plan for different subpopulations. 

- AHC warfarin Dosing Protocols 

AHC has an institution-wide standardized warfarin best practice treatment 

protocol that has been in effect for the last decade in different treatment 

facilities of the institute. The AHC protocol called “Aurora Anticoagulation 

Clinic Guideline for Ambulatory Warfarin Management” (AACG–AWM) has 

some special characteristics compared to the other dosing protocols used in 

our previous simulation studies. In the following, some details about the 

protocol are offered.   

AACG-AWM has two dosing protocols where each has three main 

components: initial dose (days 1 and 2), 1st INR in range, and INR-based 

Dose Adjustment. According to the protocol, a fixed dose of warfarin is 

prescribed for days 1 and 2 following the instructions in table 5.5. 

Table 5.5. AHC warfarin dosing protocol - AACG-AWM.  
Initial dosing for days 1 and 2. 

Patients sufficiently healthy to be treated as outpatients = 10mg/day 

Patients 65+ years of age ≤ 5mg/day 

Patients at any age and with multisystem disease, known liver 

disease, taking drugs that are likely to increase warfarin effect, 

have had prior at-goal treatment response with low doses or 

have baseline INR readings above 1.1 

≤ 5mg/day 
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Two days post warfarin initiation, INRs are monitored daily or every other day 

until the INR >= 2.0 or as indicated by referring physician. When this is 

achieved INR testing follows the chronology below (Table 5.6). 

Table 5.6. AHC warfarin dosing protocol - AACG-AWM. 1st INR in range. 

Number of days the INR and warfarin 

dose remain stable and therapeutic 
Days until the proceeding INR test 

2 3-5 

7 7 

14-21 14 

28-35 28 

42 42 

56 56 

84 
84 (absolute max number of days 

between tests) 

 

Based on this protocol, any adjustment of dosage is based on INR records in 

last few days prior to dose adjustment. This aspect makes the AACG-AWM 

different from other doing protocols such as CoumaGen-I and -II (Anderson 

2010a, 2012b) as they take into consideration only the INR value that was 

recorded just prior to dose adjustment. Figure 5.6 provides details on the third 

component of the AACG-AWM protocol which instructions on INR-based dose 

adjustment.  

The AACG-AWM protocol has some other components such as the following 

which were not taken into consideration in the process of codifying the 

protocol as they either were not providing objective measures or the WiAD 

dataset did not provide relevant information on them.  

- Drug Interaction Considerations with Warfarin 

- Herbal/Natural Medicine Interaction Considerations with Warfarin 
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- Other Factors That May Affect INR. 

5.4.2.) Methods 

In this study, our primary hypotheses were as follows:   

(1) Any warfarin dosing algorithm that provides some measure of 

personalization will demonstrate improved predicted clinical outcomes (as 

defined by TTRs and %OOR INRs within 90 day period) compared with 

current AHC ‘best-practice’ dosing algorithm across the entire AHC 

population. We defined personalization as any demographic, clinical or 

genetic variable applied across a medication dosing protocol.  

(2) Predicted clinical outcomes (as defined by TTRs %OOR INR’s within 90 

day period) will improve proportionally to the degree dose personalization 

across the entire AHC population. 

5.4.2.1.) Study Design 

To test these hypotheses, we designed a five-arm simulation study (Figure 

5.7) in which the study arms (AHC, Clinical, PG-1, PG-2, and PG-3 arms) 

Figure 5.6. AHC warfarin dosing protocol - AACG-AWM. INR-

based dose adjustment. Adjusting dosage for patients with INR 

goal of 2.5 (range 2.0 – 3.0). 
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have different levels of personalization depending on required subjects’ 

characteristics for warfarin dose adjustments. As depicted in Figure 5.7, each 

arm’s dosing protocol composed of three components. These components are 

fixed, clinical-based or PG-based. In the first arm (AHC arm), the initial dosing 

was solely based on the age and health condition of the subjects whereas in 

the other arms it was based on either clinical characteristics (i.e., Clinical arm) 

or clinical characteristics along with genotypic profile of the subjects (i.e., PG-

1, PG-2 and PG-3 arms). In the first three arms, the dose adjustment 

algorithm used was the AHC one. For the arms PG-2 and PG-3, the dose 

adjustment algorithm was a PG-based one used in EU_PACT clinical trial 

(Pirmohamed, 2013). Although the maintenance dosing algorithms (days 6 or 

8 through 90) for all of the five arms were non PG-based, the AHC 

maintenance dosing algorithm was used for the first 4 arms and the last arm’s 

maintenance dosing was based on the Intermountain dosing algorithm 

(Anderson, 2012).  

Figure 5.7. Study design for the five simulation trial arms. 
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- Study Population 

Using WiAD-Miner, we identified and extracted the EMR records of all the 

subjects who were under warfarin at AHC and had complete demographic 

and clinical records. This query resulted in 14,206 subjects.  

- Study Power Analysis: 

Taking advantage of our in silico framework, we had the opportunity to test 

our hypotheses against a wide variety of subpopulation such as minority 

subpopulations which had not participated in significant numbers in recent or 

past warfarin clinical trials (e.g., African American). With these subpopulations 

identified, we calculated the statistical characteristics of each subpopulation. 

Accordingly, we found out that the smallest subpopulation of interest was 

African-American male (i.e., 1.9% of whole extracted WiAD warfarin 

population). A power analysis was conducted to calculate the sufficient 

number of avatars to reject our null hypothesis for this subpopulation (African-

American males). Our power analysis showed that we needed to have at least 

250 African American male avatars within each arm (Significance level 0.05 

two-sided, SD 0.2, Power 0.9, INR Improvement [Difference in means] 0.06). 

Consequently, the calculation resulted in a minimum number of 13,015 

avatars for each arm. 

5.4.2.2) Clinical Avatar Populations 

For the purpose of this study, we applied the clinical avatar modeling method 

described in section 3.1.1 to the WiAD warfarin population data to generate 

clinical avatars. As mentioned in chapter 3, our BNM pipeline consists of four 

broad sections: (1) Data preprocessing, and Knowledge aggregation; (2) 

Develop Directed Acyclic Graphs (DAGs) via Ensemble Learning; (3) 
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Estimating conditional probabilities via ensemble learning; (4) Validation of the 

BNM and imposition of variables. In the following section, the application of 

our methodology to the WiAD warfarin population is described in detail. 

Following our clinical avatar model described in chapter 3, clinical avatar 

modeling and generation were done for AHC warfarin patient population (i.e., 

WiAD warfarin cohort). As mentioned in chapter 3, our BNM pipeline consists 

of four broad sections: (1) data and knowledge aggregation and 

preprocessing; (2) semi-supervised Bayesian pattern search to develop a 

Directed Acyclic Graph (DAG); (3) applying the DAG to estimate joint 

conditional probabilities and deriving an instantiated model; (4) the BNM must 

be validated against a subset of data not used in developing the BNM. In the 

following section, our methodology for the WiAD warfarin cohort is described 

in detail. 

Section 1: Data preprocessing, and Knowledge aggregation 

This section has two branches performed in parallel. In Part I we accumulated 

domain knowledge (i.e., expert knowledge or literature-defined knowledge) to 

better understand both the specifics of our data such as the way the data was 

gathered, the semantics of the data dictionary and any measurement error as 

well as the general relationship between the variables as found in literature 

review. In Part II the patient data from WiAD was characterized and prepared 

(i.e., data preprocessing). The data preparation is a multistep process as 

described in Figure 5.8.  Once the data has gone through the data 

preprocessing procedure it is aggregated into a data wrapper.   
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Part I: 

We undertook a complete literature review searching Google scholar and 

PubMed using key words such as “Race and Smoking” and “BMI and Age”, 

similar to those variables found in the Aurora Data. We filtered for articles that 

provide explicit results on populations determined to be similar to the AHC 

patient population. We then filtered for results that linked the same specific 

variables as those found in the WiAD data through an asymmetric conditional 

probabilistic relationship. In Figure 5.9A and 5.9B we demonstrate the results 

of the literature review and then how these relationships are implemented in 

the TETRAD program (Scheines, 1998). Figure 5.9A shows a total of 7 

asymmetric conditional probabilistic relationships discovered through literature 

review. An asymmetric conditional probabilistic relationship is not strictly 

causality nor do we require this strong assumption to be true in the 

development of clinical avatars. Each of the required edges, shown in the 

green directed arrows are each related to evidence cultivated through the 

literature review that were determined to relate direct to the patients in the 

WiAD database (Fiore, 1989; Kuskowska; 1992; Marot, 2011). 

Figure 5.8. Step-by-Step procedure for Section 1 
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In Figure 5.9B we see the description of knowledge tiers within TETRAD. The 

tiers allow use to inform the algorithm that certain relationships are both 

forbidden and/or asymmetric. As implemented for the AHC data, we suggest 

that IF a conditional dependency is discovered between “HEIGHT” and 

“RACE”, Then the relationship must be such that “RACE” given its position in “Tier 

1” is the causal parent of “HEIGHT” given its position in “Tier 2”.  Similarly any 

potential relationship between a higher tier variable must be directed towards a lower 

tier variable and never in the reverse direction.  

Part II: 

Data Discretization and Aggregation: 

Often healthcare data includes a mix of categorical and discrete data, such as 

race and gender, and continuous data such as age and height. The Bayesian 

search algorithms we employ require training data that is either entirely 

continuous and normally distributed or entirely discrete. The WiAD data 

Figure 5.9B. Domain Knowledge 

expressed as causal tiers of hierarchy 

Figure 5.9A. Domain Knowledge 

expressed as required causal 

relationships in green arrows 
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included a combination of both continuous and discrete variables, therefore 

the continuous variables were discretized. The process of discretizing 

continuous data is a ubiquitous data preprocessing technique that must 

balance information loss inherent in the process with the benefits of greater 

processing efficiency. There are numerous discretization methods and the 

choice can impact both the posterior probability estimation as well as the 

discovery of inherent causal structure in the underlying graph. We employed a 

common unsupervised method, EqualWidth that has demonstrated its ability 

to produce accurate data mining results for Bayesian search algorithms when 

compared to other techniques (García-Laencina, 2013).  

Once the data has been fully preprocessed it is loaded into TETRAD the 

program we use to implement the BNM search and relationship discovery.  

The final step before completing the Bayesian search, is to load the 

processed data as a data wrapper. A data wrapper converts the data from a 

flat structural file to a relational file that describes the data as tuples. Data 

wrappers are standard in data mining practices because it allows for 

maximum dimensionality to be passed through the search algorithm. 

Section 2: Directed Acyclic Graphs via Ensemble Learning 

Bayesian search algorithms are based on a number of assumptions that often 

times breakdown when applied to real data. We address the weakness of the 

Bayesian search algorithms, along with certain bias and variance problems 

within the aurora data by eliciting established methods for using ensemble 

learning such as described in Part III section 2. The step-by-step logic of 

section 2 is described in Figure 5.10. We apply an ensemble learning 

technique called, bootstrap aggregation (Bagging) to address the instability of 
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Bayesian classifier searches. From one set of training data, the data is 

resampled at random.  

The choice of bootstrap sampling technique (e.g., Parametric vs. classic 

bootstrap) can ultimately impact the quality of the model. We implemented a 

classic (Unweighted) bootstrap because imputation and missing values were 

non-existent, and there was limited bias within the selected EMR dataset. The 

classic bootstrap is completed from the original data wrapper after it has been 

loaded into TETRAD.  In Figure 5.11, the data is labeled as 

“WiAD_Warfarin_Cohort  Data” before entering the pipeline. This data 

wrapper is then aggregated into five distinct bootstraps and subdivided into 

80% and 20% subsets with 80% used as the training data. The bootstraps are 

labeled as “Training_DATA1… Training_DATA5” in Figure 5.11. The 

bootstraps were resampled to the same size n=14,206 as the original dataset. 

The 80% training data, n=11,365, was used as input into 5 Bayesian 

searches, labeled “Search1…Search5”. Knowledge that was previously 

loaded during the preprocessing phase is also applied evenly across the 

search algorithms to constrain the search space.  

Figure 5.10. Developing a DAG from Training Data 
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Additionally, in experimentation with EMR data we employ a “repeated leave 

one out bootstrap aggregation” method (Clyde, 2004; Jiang, 2007). Holding 

out data for cross validation is considered a data mining ‘best practice’ 

(Belazzi, 2004). However, when the sample size is small and outliers are 

important considerations in the data, holding out any amount of data reduces 

variance in the model. Therefore, it is recommended to perform the bootstrap 

sampling of the original data prior to the dividing the data between training 

and validation subsets.  

Each resampled training data subset was used as input with the previously 

described domain knowledge to a Bayesian search algorithm. The results of 

each search are aggregated and the results are pruned to yield a resultant 

DAG. We employed the Bayesian search algorithm called the Conservative 

PC algorithm (CPC) found within the TETRAD publicly available software. The 

CPC algorithm is a variant of the PC algorithm that has an additional step that 

provides additional autonomous arrow directionality. The PC and CPC 

Figure 5.11. Bootstrapping and performing 

searches constrain by knowledge in TETRAD 
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algorithm perform conditional independence tests between each variable 

except those required or forbidden within the knowledge box.  The conditional 

independence tests are then applied across the data wrapper to discover 

potential causative relationships. Additional details, the pseudo code and 

inherent assumptions of the PC and CPC algorithm can be found in (Sprites, 

2000) and within TETRAD. All searches were completed with an α=0.05.   

We generally recommend using multiple Bayes search algorithms for each 

bootstrap of data to address the inherent instability in the search results.  

However, in application to the WiAD dataset, we determined that the CPC 

algorithm sufficient for the following reasons: There was limited number of 

dimensions (i.e. variables) in the data in proportion to the sample size. Also, 

because all missing values were deleted from the training dataset, a major 

source of algorithm instability was addressed in preprocessing. Lastly, CPC 

was determined to best fit the data, and there was limited variation between 

bootstrapped search results.   

After the 5 CPC pattern searches were performed on the data, the DAGs 

were converted into matrix with the originating state comprising the columns 

and the destination states the rows. Each directed arrows, or edges of the 

DAGs were cataloged in a matrix for comparison. Edges are selected based 

on those that received 50% or more commonality and/or are supported by 

evidence discovered prior to performing the search. The results of the Five 

CPC searches are shown in Figure 5.12. The weight of the arrow corresponds 

to the number of times the search output confirmed an existing edge. The two 

arrows that are dashed from Gender � Tobacco and Race � Weight had 

fewer than 50% search results and therefor were not included in the 
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aggregated DAG. The resultant DAG shown in Figure 5.12 is then used in 

parallel for section three, labeled “AHC_DAG” in Figure 5.14. 

Section 3: Estimating Conditional Probabilities via Ensemble learning 

The step-by-step logic of section 3 is described in Figure 5.13. The dashed 

arrow indicates a final recursive step described at the end of this section. The 

first step in section 3 is to again bootstrap the original data set the same 

number of times as performed in section 2. The bootstraps were resampled to 

the same size n=14,206 as the original dataset. Because the justification for 

selecting a bootstrap procedure is the same in this section as for section 2, 

Figure 5.12. Results from 5 CPC searches.  

Figure 5.13. Developing a DAG from Training Data 
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we performed 5 classic bootstraps with replacement holding out 20% of each 

bootstrap for validation in section 4, (identical bootstrap to section 2). The 

bootstraps were performed in TETRAD as seen in Figure 5.14 represented by 

(“Training_Data6… Training_Data10). The DAG derived from section 2, 

“AHC_DAG” was used to develop a parametric model (PM) for each of the 

bootstraps.   

The parameters, or conditional probabilities of the Bayes net were estimated 

for each bootstrap using the ML Bayes estimator for each bootstrap as shown 

in Figure 5.14 noted by the “Estimator1… Estimator5”). At this stage the 

algorithm produced a partial failure. An example of this problem is highlighted 

in Figure 5.15 for particular parameters of “WEIGHT” within the BNM. The 

partial failure of the estimator algorithm is highlighted by the red rectangles 

within the partial estimated Bayes net. In the resultant DAG from section 2, 

“WEIGHT” is a descendent of three Variables, “HIEGHT”, “AGE” and 

“GENDER”. The partial failure is associated with the problem of insufficient 

statistics to provide estimates within those particular parameters highlighted in 

red. In this case, the training data did not provide the estimation algorithm with 

Figure 5.14.  Parameter learning in TETRAD 
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any cases from these particular parameters (e.g, there existed no patients 

with the characteristics “Gender=Female, Age=0, Hieght=0” within the 

bootstrap of the training data).   

To address this situation, and satisfy the parameter learning for this BNM, we 

simplified the model by removing edges related to “WEIGHT” according to the 

four-step logic pattern found in the general description of the method. In this 

case, there were three edges related to “WEIGHT”. Since all three edges 

were retuned every search result performed in section 2, we began by 

increasing α from a value of α=0.05, to a more stringent value of α=0.00001. 

We then used the domain knowledge aggregated in section 2 to delete further 

edges stepwise until sufficient cases existed within training data to calculate 

conditional probabilities. In doing so we increase the number of cases in the 

training data to calculate the conditional probability for all relevant states from 

the parent nodes. The resultant DAG, named “SIMPLIFIED_AHC_DAG” was 

used to derive PM and estimate the conditional probabilities of the simplified 

Bayes Net shown in Figure 5.16.  Figure 5.17 highlights our example of the 

Figure 5.15. Partial failure of Estimator Algorithm for the variable “WEIGHT” 
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variable “WEIGHT”.  We see that the edges “AGE” and “GENDER” were 

removed while the edge between “HEIGHT � WEIGHT” remained.  The 

conditional probability for each discretized category of weight was then 

estimated strictly based on the discretized categories of height. 

The conditional probabilities derived from the simplified model were then used 

as input for the original parametric model. For example, within the more 

complicated Bayes net we experienced a partial failure when the training data 

did not have any counts for patients that have “Gender=Female, Age=0, 

Height=0”. The Estimated conditional probability for this parameter was 

derived from the simplified Bayes net – using weight estimations strictly from 

its probabilistic relationship to Height. This procedure was repeated for 

“Tobacco” and “Height” until all parameters within the original Bayes net were 

satisfied with conditional probabilities for each bootstrap of data.  

Once the parameters of each Bayes net were satisfied within an instantiated 

model (labeled IM within Figure 5.16), 100,000 preliminary avatars were 

generated from each trained model. The preliminary avatars were then pooled 

in equal proportion into a set of “POOLED_PRELIM_AVATARS”.  We elected 

Figure 5.16. Parameter learning with insufficient statistics  
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to use an equal weighting scheme because, similar to the reasons for 

performing a classic bootstrap, the bias was considered minimal. The pooled 

preliminary avatars were then passed through a final round of estimation. The 

resultant “AHC_DAG” developed in section 2 was then used to derive the PM 

that was used as input to the estimator.  Because of outliers within the data 

this second round of estimation again faced the problem of insufficient 

statistics that resulted in partial failure of the estimator algorithm. This, despite 

the large sample size of pooled preliminary avatars passed through the 

Estimator algorithm. We addressed the problem in an identical manner to the 

first round of parameter learning.  We used a simplified DAG to reduce the 

conditional parents and substituting the conditional probabilities for the 

simplified state for those states within the parametric model that suffered from 

the partial failure. We used the same simplified DAG previously developed 

and shown in Figure 5.17.   

 

Figure 5.17. Simplified DAG and subsequent parameter learning  
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The parameters were then aggregated in the “TRAINED_AHC_BNM” shown  

in Figure 5.18.  This BNM was then used to develop 100,000 clinical avatars 

via Monte Carlo simulation techniques that were used as input to section 4 for 

validation purposes.  

 

Section 4: Validation of the BNM and Imposition of Variables 

The first step of this section involves validating the model with some set 

validation data shown in Figure 5.19. We performed a “repeated hold-out 

classic bootstrap” in both section 2 and section 3. A total of 5 classic (i.e., with 

replacement) unweighted bootstraps were performed in section 3. The 

bootstraps were resampled to the same size n=14,206 as the original dataset.  

Each described previously, each bootstrap was randomly divided in 80% and 

20% subsets. Therefore a total of 5 validation data sets each with the same 

size, n=2,841 were aggregated into a data wrapper labeled 

“POOLED_VALIDATION_DATA” in Figure 5.21. This set of validation data 

Figure 5.18. Final round of parameter learning 
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was then used to compare the 100,000 clinical avatars for validation 

purposes. 

There are two types of comparisons used to ensure that the simulated 

population is representative of the original data. The first is univariate  

 

distribution, or the comparative frequency of a single attribute between the 

training data and clinical avatars. The second comparison is the bivariate 

frequency distribution between the training and clinical avatar data sets.  

Variables in which the Bayesian algorithm determined a causal connection 

and are “d-connected” are plotted in frequency histograms. We found no 

significant variance in either the univariate or bivariate distribution, the 

process is refined until there is no significant difference. The comparative table 

is provided in the results section. 

The final step in the development of clinical avatars involves imposing any 

additional characteristics on the BNM validated against the pooled validated 

data. In Figure 5.20, we demonstrate how two genotypes, CYP2C9 and 

VKORC1 are imposed on the BNM derived from the WiAD database.  

 

Figure 5.19. Validating the BNM and generating Clinical Avatars 
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The probabilistic dependent relationship between “RACE � CYP2C9” and 

“RACE � VKORC1” are demonstrated in (Scott, 2010). Additionally, the 

parameters that describe the conditional probability parameters are described 

in (Scott, 2010). The validated structure and parameters that include all 

clinical avatar parameters including genotype are demonstrated in the 

Instantiated BNM titled “AHC_BNM_GENOTYPE” in Figure 5.21. This model 

was then used to generate 1,500,000 clinical avatars via Monte Carlo 

simulation techniques that were entered into the simulation platform.   

 

5.4.2.3.) Measuring Outcome Metrics 

In this study, we calculate a number of outcome metrics. A primary outcome 

metric is Time in Therapeutic Range (TTR) for patient INR. There are two 

methods for calculating TTR, such as INR check points and linear 

Figure 5.20. Final AHC DAG following Genotype Simulation. 

Figure 5.21. Section 4 as implemented in TETRAD 
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interpolation (Rosendaal, 1993). Additional outcome metrics include the 

following: 1&2.) Percent time INR higher than therapeutic range using both 

INR check points and linear interpolation methods, 3&4.) Percent time INR 

lower than therapeutic range using both INR check points and linear 

interpolation methods, 5.) Number of INR predictions, 6.) First day INR higher 

than therapeutic range, 7.) Percent INR in therapeutic range by day 5, 8.) 

Percent INR in therapeutic range by day 9, 10.) number of dose adjustment, 

11.) relative risk of ischemic stroke, and lastly 12.) relative risk of intracranial 

hemorrhage. 

5.4.2.4.) Clinical Trial Simulations  

For each study arm, a 90 day simulation was performed for each Clinical 

Avatar using each of the five PG and non-PG protocols. All results were 

stored in a structured format representing the 100 x 90 day study simulations 

for each clinical avatar in the study subpopulations. Simulation records 

included: clinical avatar record, simulated INRs and dose values (1 per day for 

each of 90 days) and calculated outcome metrics. All simulations were 

implemented in R (R Core Team, 2014) and performed on the UWM’s high 

performance computing research cluster Avi (UWM, 2014). 

5.4.3.) Results 

In the following table we present the statistical characteristics of the clinical 

avatars and the WiAD warfarin study population. The statistical analysis 

indicates no significant difference between these two populations by the 

characteristics. 
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Table 5.7. Characteristics of the WiAD warfarin study population versus WiAD 
warfarin clinical avatar population. SD: standard deviation. 

Characteristic 
WiAD Warfarin 

Population 

WiAD Warfarin  

Clinical Avatar 

Population 

Age, y, mean±SD 67.3 ± 14.43 67.2±14.47 

Weight, lb, mean±SD 199.24 ± 54.71 199.24±54.6 

Height, in, mean±SD 66.78 ± 4.31 66.53±4.32 

Gender, % 

   Female 

   Male 

 

53.14 

46.86 

 

53.10 

46.90 

Race, % 

 White 

 Black or African-American 

 Asian 

 Am. Indian/Alaskan 

 Pacific Islander 

 

95.17 

4.222 

0.3378 

0.1759 

0.0007 

 

95.19 

4.202 

0.4010 

0.1890 

0.0001 

Tobacco, % 

   No 

   Yes 

 

90.33 

9.66 

 

90.67 

9.33 

Amiodarone, % 

   No 

   Yes 

 

88.45 

11.54 

 

88.49 

11.51 

Fluvastatin, % 

   No 

   Yes 

 

99.97 

0.03 

 

99.98 

0.02 

CYP2C9*2, % 

   *1/*1 

   *1/*2 

   *1/*3 

   *2/*3 

   *2/*2 

   *3/*3 

 

NA 

NA 

NA 

NA 

NA 

NA 

 

67.39 

14.86 

9.25 

1.97 

6.51 

0 

VKORC1, % 

   G/G 

   G/A 

   A/A 

 

NA 

NA 

NA 

 

38.36 

44.18 

17.45 

 

The following figure demonstrates the mean predicted TTR of the 100 

simulations for each arm. The comparison of the results of linear interpolated 

TTR across the whole clinical avatar population for all 5 arms is shown in 

Figure 5.22. The PG-1 arm produced the highest mean predicted TTR, at 
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77.43%. The Clinical arm and PG-3 arm produced similar but significantly 

different (p<0.05) mean predicted TTRs at 69.76% and 67.4%, respectively. 

PG-2 and AHC arms produced significantly inferior mean predicted TTRs 

(P<0.05) at 62.99% and 57.16% respectively.   

Gender differences are consistent between all five arms. That is, males 

perform similarly in AHC, Clinical, PG-1, PG-2 and PG-3 when compared to 

females in those same arms. Interestingly, when the genders are also 

segregated by race as shown in Figure 5.23, gender difference remains 

consistent between white and African-American subpopulations. All five arms 

demonstrate significant difference between African-American males versus 

white males and African-American females versus white females (P<0.05). 

For all four subpopulations, PG-1 demonstrated superior predicted percent 

TTR. AHC arm demonstrates the largest difference between race and gender 

groups while PG-3 demonstrates the smallest difference between African-

Figure 5.22. TTR (Rosendaal) across the whole clinical avatar 
population for the 5 simulation arms. 
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American and white racial groups. African-American males and African-

American females demonstrate no significant difference between PG-3 and 

AHC dosing arms. 

 

Results for clinical avatars when segregated by CYP2C9 genotype are shown 

in Figure 5.24. Poor and intermediate metabolizers demonstrate significantly 

lower TTR when compared with the wild type *1/*1 CYP2C9 extensive 

metabolizer. All three PG-based subpopulations produced superior mean 

TTR’s within the PG-1 arm. Similarly, all three produced inferior mean 

predicted TTR’s in the AHC arm. For extensive metabolizers, which are a 

majority of the AHC population, the clinical arm produced the second highest 

mean predicted TTR, followed by the PG-3 arm and the PG-2 arm. For 

intermediate and poor metabolizers, the PG-3 arm produced the second 

highest predicted mean TTR’s and the clinical and PG-2 arm produced similar 

TTR results. 

Figure 5.23. TTR (Rosendaal) across the whole clinical avatar population for the 5 
simulation arms by gender and race. 
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In the final figure (Figure 5.25) we look the percent of time above therapeutic 

range and the percent of time below therapeutic range as calculated by linear 

interpolation. The results are shown for the whole population as well as two 

subpopulations white race and African-American subpopulations. The AHC 

arm produced the highest predicted time above therapeutic range for the 

whole population and white and African-American subpopulations. While PG-

3 arm produced the lowest time above therapeutic range for the whole 

population and white clinical avatars. While the arms PG-1 and PG-3 

produced similar time above therapeutic range specifically for the African-

American subpopulation.   

In contrast, the PG-2 and PG-3 produced the highest mean time, greater than 

20%, with subtherapeutic INR for the whole population and the white and 

African-American subpopulations. The AHC arm and the PG-1 arm produced 

similar predicted times subtherapeutic range for the white population and for 

the white population, but African-American demonstrated greater time below 

Figure 5.24. TTR (Rosendaal) across the whole clinical avatar 
population for the 5 simulation arms by CYP2C9 genotype. 

Extensive Metabolizer: *1/*1, Intermediate Metabolizer: *1/*2, 
*1/*3, *2/*3, Poor Metabolizer: *2/*2, *3/*3.   
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 therapeutic range in the PG-1 arm when compared to the AHC arm. The 

clinical arm produced results that demonstrate slightly greater predicted time 

below therapeutic range when compared to the PG-1 arm. Therefore, white 

subpopulations demonstrate the least time subtherapeutic range in AHC and 

PG-1 arms while African-American subpopulation demonstrates the least time 

in subtherapeutic range specifically in the AHC arm. 

5.4.4.) Conclusion 

We have simulated a total of five clinical trial arms, replicating each arm 100 

times. We simulated 1.5 million clinical avatars for each arm bringing the total 

simulated population to 7.5 million. We found that the PG-1 arm produced 

superior predicted clinical outcomes across the whole AHC population and all 

relevant subpopulations within the study population. When comparing the top 

performing arm (i.e., PG-1) to the current Aurora Health Care best practice 

warfarin dose protocol (i.e., AHC arm), we demonstrate superior TTRs for the 

whole population and all subpopulations. Therefore, we confirm our primary 

Figure 5.25. (a) Percent Time INR higher than therapeutic range across the 
five simulation arms by race. (b) Percent Time INR lower than therapeutic 

range across the five simulation arms by race. 

a b 
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hypothesis that there exists several warfarin dosing algorithms that provide a 

measure of personalization, in this case PG-based and clinically-based, that 

improved clinical outcomes across the entire AHC population.  

The superiority of the PG-1 arm was mirrored in the secondary outcome 

metrics of predicted time above therapeutic range and predicted time below 

therapeutic range. The PG-1 arm produced lower predicted time above 

therapeutic range when compared to the AHC arm for all populations and 

subpopulations, reducing the risk of intracranial hemorrhage and other forms 

of bleeding. The PG-1 arm produced similar predicted time below therapeutic 

range for the white subpopulation, however, the African-American 

subpopulation did experience significantly greater percentage time below 

therapeutic range, thereby diminishing its pharmacological effectiveness.  

We performed a total of four clinical trial arms that included some degree of 

warfarin dose personalization (Clinical, PG1, PG-2 and PG-3). We defined 

personalization as any demographic, clinical or genetic variable applied 

across a medication dosing protocol. The PG-2 and PG-3 clinical trial arms 

included patient specific dose personalization at both the initial dose 

prediction and the adjustment stage of the algorithm. In contrast, PG-1 and 

Clinical arms only included warfarin dose personalization at the initiation stage 

of warfarin therapy. As noted above PG-1 produced superior clinical outcome 

metrics for all subpopulations within the AHC study population. Additionally, 

the clinical arm produced non-inferior clinical outcome metrics to the PG-2 

arm and PG-3 arm for the whole AHC population. However, PG-based 

subpopulations did demonstrate superior outcomes with the PG-2 and PG-3 

arms.  
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Nevertheless we must reject our second hypothesis that predicted clinical 

outcomes improve proportionally to the degree of dose personalization across 

the entire AHC population. While personalization in general provides superior 

outcomes when compared to a “one-size fits all” approach for the AHC best-

practice warfarin management, greater inclusion of personal characteristics 

within the dosing algorithm does not improve clinical outcome metrics across 

the whole AHC population for primary outcome metrics.  
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6.1.) Background and Significance 

The Patient Protection and Affordable Care Act (PPACA, 2010) established 

Patient-Centered Comparative Effectiveness Research (PC-CER) as a US 

national medical research priority. Under PPACA, the Patient-Centered 

Outcomes Research Institute (PCORI, 2014) was charged to support 

research that investigates effectiveness and outcomes of health care 

treatments, medical services, and clinical care in subpopulations 

(Methodology Committee of PCORI, 2012). Subpopulations may be defined 

by race, ethnicity, gender, age, and medical and physiologic inclusion criteria 

such as disease, comorbidities, genotype or cancer molecular subtype. 

Current PCORI research focus includes secondary use of electronic medical 

records (EMR) to build clinical research databases (Selby, 2012) to conduct a 

spectrum of PC-CER studies including health care disparity in part by seeking 

evidence of treatments’ effectiveness across various populations. 

Socioeconomic status (SES) is one of the most powerful drivers of population-

level health outcomes and lower SES is consistently associated with poorer 

health outcomes (Adler, 1994a, 2008b). Consequently, one such CER area is 

health care outcome disparity observed across SES-based on education and 

income (PCORI, 2014). Another PC-CER area of immense interest to 

biomedical scientists and medical geneticists is the use and value of genetic 

tests, data and information intended to improve public health. No studies to 

date have tested if genetics can reduce SES-based health disparity outcome.   

Warfarin treatment effectiveness studies have potentially high health SES-

based disparity impact when comparisons include genetic-based against 

other “best practice” means of achieving therapeutic dosing. Warfarin’s 
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therapeutic dosing is complicated by a narrow therapeutic index and large 

interindividual dose variability (up to 20-fold depending on genotypes, 

physiology, and compliance (e.g. Anderson, 2007; Momary, 2007; Wu, 

2007)). Compared to controlled clinical trial studies, optimization of warfarin 

dosing in the clinic using a “best” practice protocol is challenging due to 

variances in treatment monitoring (Mega, 2014) and must be balanced to 

prevent thromboembolism while avoiding overdosing that increases risk to 

bleeding events (Flaherty, 2007; Lip, 2011). 

PC-CER human subject studies to improve anticoagulation outcomes by 

optimal selection of warfarin dosing protocols is impractical (too large, 

complex and costly) if designed to test all or even many of the published 

pharmacogenetic-based (PGx) and non-PGx dosing algorithms applied to 

important (and numerous) CER subpopulations.  We have created and 

validated a pharmacogenetic clinical trial modeling and simulation platform 

(Fusaro, 2013) to conduct in silico complex CER simulations to test PGx 

treatment protocols against key patient subpopulations with a goal to predict 

improved treatment outcomes. In this study, we extend the application of the 

platform to include EMR data of a representative large US healthcare system 

with diverse population to conduct a CER study between warfarin treatment 

protocols. In addition to typical CER study design factors, we profile the study 

population by SES and indicate how outcomes may be affected by 

educational and income status as experienced in Milwaukee. 

6.2.) Objective 

We create an anticoagulation patient EMR database from patients treated by 

warfarin at Aurora Health Care system (AHC), a Milwaukee based network, 
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where an institution-wide standardized warfarin best practice treatment 

protocol has been in effect for the last decade. Thereafter, we use the 

database to identify SES outcome disparity and as input to our simulation 

platform that models patient subpopulations, individual patient treatment and 

outcomes, simulates use of multiple anticoagulation protocols, predicts patient 

and population outcomes, and tests those predictions against patient data 

extracted from the database. We then execute an in silico study that tests four 

warfarin dosing protocols against two (simulated) EMR-based SES 

subpopulations to predict if any of the four protocols reduces the outcomes 

disparities. This PC-CER study demonstrates how large comprehensive 

EMRs covering diverse patient populations, coupled with novel modeling and 

computational simulations, provides opportunity to conduct and in part 

validate, in silico CER in diverse populations. 

We first provide a general description of the in silico approach, then describe 

and apply the methods used to test differences between PGx versus non-PGx 

anticoagulation treatment in a diverse Milwaukee population, and finally, 

demonstrate how the results can be used to demonstrate treatment outcomes 

such as “percent Time in Therapeutic Range” (TTR) of International 

Normalized Ratio (INR) and frequency of INR tests (Gouin-Thibault, 2010; 

Koertke, 2003; Sawicki, 1999; White, 1989; Horstkotte, 1998) and validation 

stratified by various factors including SES. 

6.3.) Materials and Methods 

The in silico PC-CER approach starts with extraction of EMR patient data 

pertinent to the objective of the study. In this study, we extract and transform 
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anticoagulation patient records from AHC over the period 2002-2011 (Figure 

6.1 Panel A. AHC EMR). 

 

Next, we uploaded the data into a minable database (Wisconsin 

Anticoagulation Database, WiAD, Figure 6.1, Panel A.) and created a data 

mining application (WiAD-Miner). The in silico approach then requires a study 

design complementary to the objective of the PC-CER and uses our 

previously published Pharmacogenetic Clinical Trial Simulation (PCTS)  

platform (Figure 6.1, Panel B), (Fusaro, 2013) and an iterative PC-CER 

modeling workflow that couples the strength of the EMR database with the 

simulation platform (Figure 6.1.). Testing and validating proposed improved 

treatment protocols against best practice are represented by dotted lines in 

Figure 6.1. Herein, we present the methods for each component of the in 

Figure 6.1. Our two component in silico PC-CER approach consists 
of a process for the secondary use of EMR data (Panel A) and a 

study design and simulation platform (Panel B). The iterative use of 
the two components can be applied to comparative effectiveness 

and healthcare disparity research. 
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silico PC-CER approach when applied to test if genetics can reduce SES-

based outcome disparity in anticoagulation therapy. 

6.3.1.) Secondary Use of Large Diverse Healthcare EMR 

AHC is the largest health care system in Wisconsin serving approximately 1.2 

million unique patients each year through 7.8 million patient encounters per 

year. AHC’s EMR is the most comprehensive (by size, type of health care and 

period of time) digitized health care resource of Southeast Wisconsin’s 

population capturing urban, suburban, and rural constituents of all racial, 

ethnic, and socioeconomic backgrounds. This resource provides a unique 

opportunity to capture data and information vital to conducting retrospective 

and predictive PC-CER studies. However, the same factors that make AHC’s 

EMR extremely valuable (size, scope and longitudinal extent) to PC-CER 

objectives in general, create great difficulty in capturing the targeted data 

important to a particular PC-CER study. Consequently, we have created a 

modular and replicable method to identify, extract, transform and load process 

and tools to mine EMRs and produce a highly enriched PC-CER 

knowledgebase that provides both input to and validation of our CER studies.  

 6.3.1.1.) EMR Extraction, Transformation, and Loading 

The AHC EMR was mined to extract all patients with evidence of prescription 

of: Coumadin (Warfarin), Heparin, Ticlopidine (Ticlid), Clopidogrel (Plavix), 

Dipyridamole (Persantine), Abciximab (ReoPro), Eptifibatide (Integrilin), 

Tirofiban (Aggrastat), or Dabigatran (Pradaxa) over the period of 2002 to 

2011. Patient data was de-identified per IRB approval (allowing zipcode) by 

an AHC honest broker before distribution to the research team. Longitudinal 

data records of 157,450 patients including: gender, race, height, weight, age, 
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day of visit, patient's zipcode, patient's city, provider's zipcode, smoking 

status, INR, medications received (day, dose, frequency), interacting 

medications (Amiodarone, Simvastatin, Fluvastatin, Lovastatin, Atrovastatin, 

Rosuvastatin, Pravastatin, Aspirin), medication indications (by ICD-9 codes: 

Orthopedic surgery-hip or knee, Deep Vein Thrombosis (DVT), Pulmonary 

embolism, Atrial fibrillation, Atrial flutter, Atrial fibrillation and flutter, Stroke, 

Heart valve replacement) and comorbidities (by ICD-9 codes: DVT, 

Pulmonary embolism, Stroke, Myocardial infarction, Bleeding). Subsequent 

data cleaning, quality control and quality assurance include an iterative 

process of data parsing to detect irregularities; statistical analysis designed to 

test population-wide distributions and possible biases; refinement of inclusion 

and extraction data mining codes to address irregularities, possible missing 

data and detected biases; and ultimately, data transformation to produce a 

cohesive set of records capturing all available medical records in a consistent 

format following Weiskopf (2013). Representative of our process was the 

complex method to produce consistent primary and secondary anticoagulation 

outcome metrics such as longitudinal metric TTR in targeted range and 

frequency of INR values. INR frequency is required to assess outcome 

metrics from EMR data since patients seen in the best practice clinical setting 

typically do not experience the same frequency of INR monitoring and 

corresponding dose adjustment as experienced for the controlled clinical trial 

setting (Mega, 2014). 

All extracted INR values and frequency were tested against physiological, 

treatment and compliance consistency criteria such as exclusion criteria:  (a) 

INR values ≤ 1.2 since such values are likely unrelated to warfarin therapy 
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(White, 1989), (b) INR values ≥ 10 consistent with the upper limit of AHC lab's 

reference range and (c) problematic INR values during fixed 5mg/day warfarin 

exposure periods (Sagreiya, 2010). We also profiled patients by defined 

treatment periods (e.g. fixed time or medical procedure periods) during which 

TTR calculations are likely well defined. For example, the warfarin exposure 

period was defined by a combination of time period and frequency of INR 

values (at least two INR values in a 90 day window). For those individuals 

“profiled” by the defined treatment period, the TTR was calculated using the 

linear interpolation method of Rosendaal (1993). This method assumes a 

linear relationship between two consecutive INR results, assigns an INR value 

to each day between successive observed INR values, and determines the 

proportion of time for which the INR is below, within or above the therapeutic 

range (i.e., time in which patient INR values were between 2 and 3). Then, the 

individual warfarin exposure period TTRs and mean TTR ( TTR  ) was 

calculated for each patient.  

6.3.2.) WiAD and WiAD-Miner 

After rigorous data extraction, quality control and transformation, the de-

identified patient record “cleaned” data (157,450 records reference above), 

tagged profiles and related metadata were loaded into WiAD. The WiAD 

patient subpopulation of AHC includes 49.65% female and 50.35% male with 

mean age of 67.99 yo (female) and 65.22 yo (male). WiAD patients are 

geographically distributed across all 72 counties of Wisconsin and WiAD’s 

racial distribution is consistent with that of the state. 47.8%, 10.4% and 1.9% 

of WiAD patients have evidence of only 1, 2, or 3 medications respectively. In 

addition to the AHC patient data, WiAD includes complementary data such as 
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Wisconsin population statistics, demographics, and US census data to 

expand the “knowledgebase” and provide more robust information for the 

subsequent simulations and predictions. An interactive data profiling and 

population “segmentation” tool (WiAD-Miner) includes all the profiling (e.g. 

warfarin only exposure patients), outcome metric (e.g. TTR  based on 

warfarin exposure period) and related data analysis functions described 

above and developed in R (R Core Team, 2013). WiAD-Miner includes a 

cohort selection tool to profile and identify patient subpopulations by any or a 

combination of patients’ characteristics including gender, age group, race, 

patient's residence zipcode, provider's zipcode, medication, medication 

exposure, duration of treatment, number of dose records, frequency of INR 

values, medication indication, and comorbidities. WiAD-Miner allows 

adjustment of various parameters such as the medication exposure period 

definition, triggering a re-profiling and thereafter, re-calculation of outcome 

metrics. 

6.3.3) Pharmacogenetic Clinical Trial Simulator (PCTS)  

Our pharmacogenetic clinical trial simulator (Figure 6.1. Panel B) consists of 

the 5 following adjustable modeling components: 1) A Bayesian network 

model (BNM) derived from a study population to produce the virtual patient 

population (“Clinical Avatars”) consistent with study population, 2) A module 

that sets study conditions such as number of subjects, initial dosing, length of 

study, number of replications, and similar, 3) A circulating medication 

concentration and INR predictor based on appropriate 

pharmacokinetic/pharmacodynamics (PK/PD) model (e.g. Hamberg, 2007), 4) 

A treatment dose algorithm that uses INR or other pertinent physiological 
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variables and invokes a treatment protocol (see details for warfarin treatment 

below), and 5) A study healthcare outcome calculator (e.g., TTR). This five-

component simulator was validated by significant testing against major 

pharmacogenetic anticoagulation clinical trials such as CoumaGen-I and –II 

(Anderson, 2007a, 2012b). The validation included statistically consistent 

clinical simulations and predictions against the published 90 day, multi-

treatment protocol CoumaGen-I results (Fusaro, 2013). All simulations were 

implemented in R (R Core Team, 2013) and performed on the local high 

performance computing research cluster Avi (UWM, 2014). The PCTS 

platform includes the generation of Clinical Avatar populations that mirror the 

study population’s statistical characteristics and are consistent with the EMRs 

of actual patients. Thereafter, the representative synthetic patient populations 

are used to conduct replicated clinical simulations testing multiple 

anticoagulation medication-protocol options.  

6.3.4.) Study Population 

In this study, WiAD-Miner was used to identify all WiAD patients exposed only 

to warfarin from 2002-2011 whose records include complete demographic 

(e.g. race) and geographic data (n=16,900), hereafter this group is called the 

WiAD warfarin population. For the purpose of calculating treatment outcomes 

and identification of SES status in this study, the WiAD warfarin population 

subjectswhose records satisfied the following criteria were selected (a) the 

inclusion criteria: (1) zipcode in Milwaukee, (2) treatment periods between two 

successive INR values of 90 days or less and (b) the exclusion criteria:  (1) 

periods of warfarin exposure interruptions (e.g., hospitalization), and (2) 1 

week before and 3 weeks after warfarin exposure interruptions. With these 
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criteria, WiAD-Miner identified 1085 WiAD warfarin population subjects who 

were then socioeconomically profiled by SES levels across the three 

“Milwaukee SES zipcode” groups as defined in the 2012 Milwaukee Health 

Report (Chen, 2012) resulting in a “lower SES” (n=191), “middle SES” 

(n=716) and “upper SES” (n=178) subpopulations. 

6.3.5.) In Silico PC-CER Study Design 

The PC-CER Study design is based on the comparative effectiveness 

research aim to detect protocols that improve outcomes and minimize 

disparity. The PCTS simulation platform requires three specifics: 

Medication(s) and treatment protocols to be tested; Subpopulation(s) to be 

studied; and the length of the treatment period and the treatment outcomes. 

Warfarin dosing protocols typically include three components - an early (1-2 

day) warfarin loading dose “initial” protocol followed by a relatively short dose 

“adjustment” protocol (typically 3-5 days) followed by the therapeutic dose 

“maintenance” period as needed for treatment. For these simulations, we use 

four three-component warfarin dosing protocols over a fixed 90 day simulation 

period: non-PGx CoumaGen-I Standard (Anderson, 2007) PGx CoumaGen-I 

PG (Anderson, 2008), PGx CoumaGen-II PG-2 Arm (Anderson, 2012) and the 

PGx Wilson as defined in Fusaro (2013) denoted CG-I STD, CG-I PG and 

CG-II PG-2, and “Wilson” respectively (Figure 6.2). 

Clinical Avatars Study Population: The Milwaukee lower SES and the 

Milwaukee upper SES subpopulations as defined above were used in this 

study. A BNM was developed and trained on the WiAD warfarin population. 

The BNM method is described in Fusaro (2013). The Directed Acyclic Graph 

(DAG) produced by fitting the WiAD warfarin population to the optimal BNM 
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was used to produce all clinical avatars used in this study. The BNM's 

conditional probability table ("CPT") was adjusted to reflect the correlation 

structure found in the data of the two subpopulations. CPT prior probabilities 

for the BNM require statistical characterization of the subpopulation including 

age, gender, weight, height, race, body surface area (calculated from height 

and weight), tobacco use status, amiodarone use status, and genotypes for 

CYP2C9 and VKORC1. Statistics of the demographic and clinical information 

for each of the subpopulations were calculated by WiAD-Miner. The genotype 

statistics came from a study which determined individual and combined 

frequencies of important genetic variants associated with warfarin metabolism 

in several racial and ethnic groups (Scott, 2010). Using the BNM and related 

R software, we created a sufficient number of clinical avatars (191 x 1000 

replicates for lower SES and 178 x 1000 replicates for upper SES) to conduct 

one thousand parallel simulations of each arm of the study (Figure 6.2).  

PC-CER Simulation: For each Clinical Avatar study set (191 lower clinical 

avatars and 178 upper clinical avatars), a 90 day simulation was performed 

for each Clinical Avatar using each of the four PGx and non-PG protocols. All 

results were stored in a structured format representing the 1000 x 90 day 

study simulations for each clinical avatar in the study subpopulations. 

Simulation records included: clinical avatar record, simulated INRs and dose 

values (1 per day for each of 90 days) and calculated TTRs using Rosendaal 

method (Navathe, 2011). Statistical analysis was applied across the 1000 

replicated simulations between the two SES groups. 



www.manaraa.com

249 

 

 

 

6.3.6.) Statistical Analysis  

All statistical analyses were conducted with R (R Core Team, 2013). 

Statistical significance was set at p<0.05, unless otherwise noted. Single 

factor differences between subpopulations were tested using either a 

parametric (unpaired t-test, for normal distributions) or a nonparametric test 

(Wilcoxon-Mann-Whitney, for non-normal distributions). Comparisons 

between the simulated cohorts for TTR were made by using one-way ANOVA 

tests along with the Tukey post-hoc honestly significant difference (HSD) test 

to examine the TTR variances across the SES-based subpopulations. Two 

way ANOVA test was used to detect possible interactions between 

characteristics race and SES on TTR for data corresponding to the WiAD’s 

Figure 6.2. The study’s design with 4 arms. 
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cohorts. Results are expressed as mean ± standard error of the mean (SEM) 

unless otherwise specified. 

6.4.) Results 

6.4.1.) General Characteristics of WiAD Warfarin Cohorts 

A total of 369 warfarin patient were identified across the Milwaukee lower SES 

(n=191) and upper SES (n=178) groups (2nd and 3rd columns of Table 6.1). 

Mean (SD) age of upper and lower SES patients were 73.74 (14.4) and 61.69 

(16.18) respectively. There was no significant difference (p>0.05) in either 

gender or height but average weight and tobacco use of the lower SES was 

higher than the upper SES cohort. The racial profile of the lower SES cohort 

was very different from the upper SES cohort (e.g. 53.9% versus 93.8% 

white).  

6.4.2.) General Characteristics of Clinical Avatar Cohorts  

The statistical characteristics of the clinical avatars simulated to represent the 

study subpopulations, are presented in the 4th and 5th columns of Table 6.1. 

All demographic and clinical characteristics of the clinical avatar cohorts were 

statistically the same as the Milwaukee warfarin lower and upper SES study 

cohorts. Genotype frequencies were matched to those published for 

populations equivalent to the AHC (Scott, 2010).  

6.4.3.) WiAD Warfarin Cohorts’ Outcome Metrics 

The outcome metrics for this study were TTR and number of INR (Figures 6.3 

and 6.4). Lower SES cohort had significantly lower TTR compared to Upper 

SES (39.82%±1.9 vs 48.88%±1.83, P<0.05). Lower SES cohort had 
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Table 6.1. Basic characteristics of the WiAD warfarin and clinical avatars 

cohorts. (1) The WiAD warfarin cohorts’ genotypes were imputed using 

Scott’s distributions, correlations and joint distributions (Scott, 2010). 

Characteristics 

WiAD Warfarin Cohorts Clinical Avatar Cohorts 

Milwaukee 

Lower SES 

Milwaukee 

Upper SES 
Lower SES Upper SES 

Number of Patients 191 178 191 178 

Age, year, mean (SD) 61.6 (16.1) 73.74 (14.4) 61.29 (15.9) 73.38 (14.3) 

Gender, female % 59.1 56.1 59.2 57.4 

Weight, kg, mean 

(SD) 

91.2 (26.2) 84.5 (24.7) 94.4 (25.4) 87.7 (24.6) 

Height, in, mean (SD) 66.13 (4.2) 66.25 (4.9) 66.28 (3.7) 65.78 (3.7) 

Race, % 

   White 

   African American 

   Asian 

 

53.9 

44.5 

1.6 

 

93.8 

5.6 

0.6 

 

53.8 

44.8 

1.3 

 

93.9 

5.4 

0.6 

Tobacco use, % 10.9 5.0 10.7 5.3 

Amiodarone use, % 12.0 12.9 11.4 13.2 

DVT, % 26.1 17.4 29.7 18.4 

VKORC1, % 

   A/A 

   G/A 

   G/G 

(1) 

10.5 

32.5 

56.8 

            (1) 

16.9 

43.5 

39.4 

 

9.7 

33.0 

57.2 

 

16.4 

42.1 

41.2 

CYP2C9, % 

   *1/*1 

   *1/*2 

   *1/*3 

   *2/*2 

   *2/*3 

   *3/*3 

(1) 

70.4 

10.1 

6.5 

3.6 

1.1 

0.7 

(1) 

66.5 

14.4 

9.0 

6.2 

1.8 

0.2 

 

71.1 

8.6 

6.0 

3.0 

1.0 

1.1 

 

67.4 

13.3 

8.5 

5.4 

1.9 

0.3 

 

significantly lower number of INR than Upper SES (7.0 vs 13.0, median, 

respectively, p<0.05). No significant interaction between SES group and race 

on TTR was present (two-way ANOVA, p<0.05). In the absence of interaction 

with race, SES had significant effect on TTR . 

6.4.4.) Clinical Avatar Cohorts’ Outcome Metrics 

Figure 6.3 presents the Milwaukee lower (left panel) and upper (right panel) 

SES clinical avatar cohorts’ TTR computed for CG-I STD, CG-I PG, CG-II PG-

2 and Wilson in order. 
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 For the lower SES cohort, all PGx protocols produced significantly higher 

results than the non-PGx protocol and the Wilson protocol was highest 

(42.41±2.26 vs 52.04±2.24, 56.53±1.93, 73.84±1.52, ANOVA, p<0.05). The 

same result was true for the upper SES cohort (38.85±0.74, 52.58±0.53, 

52.46±0.44, 75.66±0.49, ANOVA, p<0.05). The averaged TTR predicted by 

the Wilson protocol for the two clinical avatar cohorts were not significantly 

different. The average 90 day frequency of INR predicted for each protocol 

was shown in Figure 6.4 (Lower SES, left panel, Upper SES, right panel).  

For the lower SES cohort, the CG-I STD protocol predicted significantly higher 

frequency of INR than either CG-I PG or Wilson protocol (10.2±0.4 vs 

9.4±0.16 and vs 8.7±0.3, ANOVA, p<0.05). Whereas in the upper SES clinical 

avatar cohorts, the predicted frequency of INRs were not different. 

Figure 6.3. Averaged TTR for lower and upper SES clinical avatar cohorts by 

dosing protocol (left and right panel). Capped vertical lines represent standard 
error of the mean. For both cohorts, the Wilson protocol’s TTR was 

significantly higher than any other protocol (ANOVA, p<0.05). 
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 6.4.5.) Comparison between WiAD Warfarin Cohorts and 

Clinical Avatar Cohorts 

Averaged TTR was not significantly different between the Milwaukee lower 

SES cohort (calculated from EMR data) under current AHC non-PGx best 

practice protocol when compared to the equivalent clinical avatar cohort under 

the CG-I STD dosing protocol (39.82%±1.9 vs 42.41±2.26) and was 

significantly less than the three PGx protocol predictions (39.82%±1.9 vs 

52.04±2.24, 56.53±1.93, 73.84±1.52, ANOVA, p<0.05). Averaged TTR for the 

Milwaukee upper SES cohort is significantly more than that predicted for the 

upper SES clinical avatars using CG-I STD (48.88%±1.83 vs 38.85±0.74) and 

significantly less than that predicted using the Wilson protocol (48.88%±1.83 

vs 75.66±0.49). 

Figure 6.4. Averaged frequency of INRs for lower and upper SES clinical 
avatar cohorts by dosing protocol (left and right panel). Capped vertical lines 
represent standard error of the mean. For both cohorts, the Wilson protocol’s 
frequency of INRs was significantly lower than any other protocol (ANOVA, 

p<0.05). 
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6.5.) Discussion 

In this study, we present an in silico pharmacogenetic anticoagulation PC-

CER approach applied to a patient-centered outcomes simulation that 

produced a prediction that was validated with patient data acquired directly 

from a large hospital transaction electronic medical record system. We 

applied this approach to a well-documented health disparity cohort defined by 

a Milwaukee SES index. Upper and lower SES patients treated by warfarin 

using the healthcare system’s best practice dosing protocol were extracted 

from the EMR and simulated to predict treatment outcomes under four 

different warfarin dosing protocols. The approach we used in this study 

includes three key elements (Figure 6.1.):  a) High quality EMR derived data 

set and data mining environment (WiAD) from which clinical-trial like outcome 

metrics are extracted; b) Means to conduct complex multi-factorial 

anticoagulation simulation study designs (PCTS) and predict outcome metrics 

from multiple treatment protocols; and c) Means to test the predicted outcome 

metrics against those derived from the EMR (WiAD-Miner).  

It has been suggested that meaningful patient-centered outcomes research 

need high-quality data, including greater clinical detail, longitudinal follow-up, 

and linkages among data sets (Navathe, 2011). An important result of this 

work is the dynamic collection of anticoagulation treated patient data and 

related information encapsulated in WiAD in support of our PC-CER study. 

WiAD includes over 150,000 Wisconsin resident patients spanning some ten 

years of anticoagulation diagnosis, treatment and outcome data derived from 

the Aurora Health Care EMR and all data was processed using a two-step 

extraction and transformation method including completeness, correctness, 



www.manaraa.com

255 

 

 

 

and concordance (Weiskopf, 2013). We used WiAD to select the two 

Milwaukee warfarin SES subpopulations and calculate both TTR and number 

of INRs. The lower SES subpopulation’s TTR was significantly less than the 

upper SES subpopulation’s TTR beyond any interaction based on race or 

ethnicity alone. This result is consistent with the Milwaukee Heath Report 

2012, which indicated that dramatic health disparities by SES exist and persist 

within Wisconsin’s largest city (Chen, 2012). Our results demonstrate that this 

disparity is correlated to SES and may be explained by doctor-patient 

relationships as demonstrated in previous studies (Schouten, 2006; Bates, 

2009).  

The 90-day warfarin therapy simulation predicted similar outcome for the 

standard non genotype-based dosing protocol (non-PGx CG-I STD) to those 

calculated for the lower SES subpopulation using the EMRs.  Surprisingly, the 

approach also predicted a similar level of averaged TTR (38.85%) for the 

upper group under the standard protocol as the lower subpopulation even 

though the upper subpopulation’s EMR-calculated averaged TTR was much 

higher (48.88%). This result indicates that the actual outcomes of upper SES 

group in the healthcare system is much higher than one would predict with 

consistent application of the same protocol across all patients independent of 

SES. In addition, the predictions suggest that the warfarin genotype-based 

Wilson protocol would produce the highest averaged TTR across the two SES 

subpopulations while requiring a significantly lower frequency of INR values 

for the lower SES subpopulation. Consistent with our predictions for a revised 

CoumaGen-I trial (Fusaro, 2013). the Wilson protocol produced the best 
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outcomes of all protocols and simultaneously dramatically reduced the health 

disparity between the lower and upper SES subpopulations.   

6.6.) Conclusion 

Multifactorial PC-CER clinical trials designed to test the optimal treatment 

against multiple subpopulations create a complex and costly paradigm whose 

results will guide improved healthcare. Part of this complexity can be 

addressed using judiciously developed and validated mathematical modeling 

and simulations. Herein, we demonstrated the value of using EMRs to extract 

clinical-trial like anticoagulation outcome metrics and detect possible 

disparities within the study population. We applied the approach to a study 

population that includes individuals who historically experience health 

disparity to simulate patient outcomes using one non-PGx and three PGx 

protocols. Our results indicate that the Wilson genotype-based warfarin 

protocol applied systematically to all patients, improves outcomes overall and 

reduces the observed health disparity. If validation studies designed to test 

these predictions prove true, then the optimal warfarin protocol translated into 

the healthcare setting will improve best practice as suggested in Figure 6.1’s 

dotted lines. The combination of in silico studies followed by carefully 

designed targeted validation studies, suggests a powerful approach to 

improve healthcare overall and reduce health disparity in particular. 
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Chapter 7:  Conclusions and Future Efforts using In SiIico PC-CER 

Translational Research Framework 

 

7.1.) Conclusion 
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7.1.) Conclusion 

The concept of “translational research” is relatively new. In a commentary in 

JAMA, Woolf has pointed out that “translational research means different 

things to different people” (Woolf, 2008). The newly established NIH’s 

National Center for Advancing Translational Sciences has defined 

“Translation” as “the process of turning observations in the laboratory and 

clinic into interventions that improve the health of individuals and the public - 

from diagnostics and therapeutics to medical procedures and behavioral 

changes” (NCATS, 2014). According to their definition, translational science is 

“the field of investigation focused on understanding the scientific and 

operational principles underlying each step of the translational process” 

(NCATS, 2014). As such, translational research models are designed to 

“translate” discoveries identified through basic science studies (whether 

gained in animal models of human disease or through human studies), to 

knowledge concerning the potential value of the discovery’s application in 

medicine.  

Translational research in genomics, specifically pharmacogenomics as one of 

the first clinical applications of the new genomic era, aims to move promising 

genomic applications to clinical and public health practice for population 

health benefit (Cleeren, 2011). Despite the demonstrable benefits of many 

new genomic discoveries, there have been gaps between the explosive 

growth in scientific discovery and technology and the implementation of this 

new knowledge. It is widely recognized that the current translational process 

is slow, very expensive and often results in an incomplete transfer of research 

findings into practice, and consequently failure of comparative effectiveness 
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studies used to translate the findings into substantial changes in patient care 

and health disparities (Khoury, 2007). A study aiming to evaluate the 

predictors of and time taken for the translation of highly promising basic 

research into clinical applications, over a 15-year period, showed that only 

about 5% of the basic science findings were licensed for clinical use and only 

1% were extensively used for the licensed indications (Contopoulos-Ioannidis, 

2003). 

Although a large number of translational research models have been 

developed over the time, however, no existing model has adequately 

addressed the pressing need to create a process and pragmatic approach 

that will cover the ever expanding collection of high-throughput, individualized 

data that is generated by ever advancing technology. In short, the deluge of 

big data especially in the light of expanding electronic medical record systems 

(EMRs) and genomic era has overwhelmed the antiquated models and 

processes designed to translate important and growing data and evidence to 

the healthcare setting. These models are further weakened when considering 

the important area of patient-centered, comparative effectiveness research 

and the potential disparity of outcomes when coarse applications are applied 

to diverse populations. Given these facts and the need to address many 

complex real-world healthcare questions in short periods of time, it seems that 

alternative research designs and approaches should be considered in 

translational research.  

Taking into consideration these facts, in this dissertation, I have proposed an 

iterative and bidirectional agile translational research model enhanced with an 

in silico knowledge synthesis model (iS-TR) to facilitate pharmacogenomic 
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patient-centered comparative effectiveness research (PC-CER) studies. I 

have hypothesized that retrospective EMR analysis and subsequent 

mathematical modeling and simulation predictions (a) may facilitate and 

accelerate the process of generating and translating pharmacogenomic 

knowledge, (b) may be applied to determine comparative effectiveness of 

anticoagulation treatment plan(s) tailored to well defined target populations, 

and (c) may result in a decrease in overall adverse risk and improve individual 

and population outcomes. 

To test the hypotheses, I have developed an In Silico PC-CER Approach for 

warfarin pharmacogenomics knowledge. The two-component In Silico PC-

CER Approach consists of a process for the secondary use of “Big EMR Data” 

resulting in a unique anticoagulation database, Wisconsin Anticoagulation 

Database (“WiAD”), and also a study design and clinical trial simulation 

platform. Once the simulation platform was validated by replicating and 

reproducing the results of two major warfarin pharmacogenomic clinical trials 

of CoumaGen-I and II (Anderson, 2007a, 2012b), the Approach was applied 

(a) to predict optimal anticoagulation treatment plan for the Aurora Health 

Care’s large heterogeneous patient population, and (b) to an anticoagulation 

therapy outcomes disparity in City of Milwaukee recognized as the most 

segregated metropolitan area in the country with a significant SES-based 

health disparity.   

The studies’ results have demonstrated that the In Silico PC-CER Approach 

taking advantage of retrospective EMR analysis and subsequent 

mathematical modeling and simulation prediction could facilitate and 

accelerate the process of generating and translating pharmacogenomic 
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knowledge on comparative effectiveness of anticoagulation treatment plan(s) 

tailored to well defined target populations (leading to a decrease in overall 

adverse risk and improve individual and population outcomes). Accordingly, 

we have concluded that the combination of in silico studies followed by 

carefully designed targeted validation studies would be a powerful approach 

to conduct PC-CER studies, improve healthcare overall and reduce health 

disparity in particular. 

7.2.) Limitations 

The In Silico PC-CER Approach provides many opportunities and we have 

demonstrated that it could be used as an effective approach to improve and 

facilitate translational research. However, given the complexity of the 

anticoagulation therapy in real clinical settings especially for warfarin, transfer 

of knowledge and evidence produced by the Approach to the real world 

clinical setting requires clinical judgment of the healthcare providers.  

Even though the Approach provides a great opportunity to conduct 

comparative effectiveness studies on heterogeneous study populations; 

however, real world clinical conditions will obviously vary and do not perfectly 

reflect the content or performance of the Approach. For instance, several 

foods and herbal supplements can interact with warfarin and affect its 

effectiveness. The current Approach does not include modules to take into 

consideration this kind of factors in its predictive outcomes. 

7.3.) Future Work 

In next few months, I will focus on improving the In Silico PC-CER Approach. 

One important step will be to expand and enrich WiAD by extracting and 

including more clinical information of the subjects allowing us to take 
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advantage of other predictive models such as CHA2DS2-VASc for risk of 

ischemic stroke (Lip, 2010) and HAS-BLED for risk of bleeding (Pisters, 

2010). The other task will be to design and conduct some validation studies of 

the predicted subpopulation anticoagulation treatment plans produced by the 

In Silico PC-CER Approach.   

I am also interested in applying the In Silico PC-CER Approach to other fields 

such as cancer recurrence and progression. The Approach also has great 

potential to be used as the basis of a Decision Support System for clinicians. 
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● Instructor, Anatomy and Physiology Course, Department of Biological 

Sciences, Fall 2009 
● Instructor, Introduction to Health Care Informatics Course, Fall 2010, Fall 2011 
● Instructor, Legal, Ethical and Social Issues in Healthcare Informatics Course, 

Fall 2010, Fall 2011 
● Instructor, Public Health Informatics and Genomics (PHIG) Course, Spring 

2012 
● Instructor, Leadership for Healthcare Professionals Course, Fall 2014 

 
Tehran University of Medical Sciences 

Administration 
● Chief of Staff to the Chancellor, 2000-2005 
● University Council Secretary, 2000-2005 
● Member of the Campus Academic and Physical Master Planning Executive 

Leadership Team, 2000-2005 
 
Medical Practice 
● Ziayian General Hospital, 2000-2003 
● Sina Teaching Hospital, 2003-2006 

Head of the emergency ward (ER) 
 
Editorial Activities 

●    Reviewer, AMIA Annual Conference, American Medical Informatics 
Association, 2014 

●    Reviewer, Journal of Interprofessional Care, 2014 
●    Reviewer, The 14th World Congress on Medical and Health Informatics 

(Medinfo 2013), 
   Copenhagen, Denmark, 2012-2013 

● Reviewer, Journal of Applied Clinical Informatics, Official eJournal of IMIA 
(International Medical Informatics Association) and AMDIS (Association of 
Medical Directors of Information Systems), 2012-present 
 

Research Projects 

● Developing Metadata Registries across the Roswell Park’s Data Repositories, 
University of Wisconsin-Milwaukee and Roswell Park Cancer Institute, NY, 
2014 

● Reconciliation of the Terminology Repositories Used on the User Interface and 
Corresponding Manuals for 32 GE Healthcare’s Diagnostic Cardiology Devices, 
University of Wisconsin-Milwaukee and GE Healthcare, 2014 

● Guiding Warfarin Clinical Trial Design Using Pharmacogenetic Simulations, 
University of Wisconsin-Milwaukee, Harvard Medical School and Aurora Health 
Care, 2012-2014 

● Predicting Clinical Validity of Bladder Cancer Nomograms, University of 
Wisconsin-Milwaukee and University of Wisconsin-Madison, 2012-2013 

● Biomedical Informatic Analysis of the RNA of NF1 Associated Nerve Sheath 
Tumors, University of Wisconsin-Milwaukee, University of Alabama at 
Birmingham, and Harvard Medical School, 2011-2012 

● Population-wide Analysis of the Likely Benefits of Genetic Testing in Narrow-
Therapeutic Window Drugs. University of Wisconsin-Milwaukee. 2010-2012 

● Quantitative Assessment of Breast Cancer Risk Prediction Algorithms in 
Minority Populations. University of Wisconsin-Milwaukee. 2011-2012 

● Collaborating Intelligent Health Information Systems Initiative (CIHISI). 
University of Wisconsin-Milwaukee, NSF-PFI Grant. 2007-2009 

● Using Evidence-based Nursing Practices and EHR Decision Support to 
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Reduce Fall-related Patient Injuries in Acute Care. University of Wisconsin-
Milwaukee and Aurora Health Care, AHRQ Grant. 2009 

● Multilevel Comprehensive Models for the Analysis of the University 
Performance. Tehran University of Medical Sciences. 2003-2005  

● Evaluating, Designing and Implementing a New Model for Health Care Delivery 
in the Trauma Center of Sina Teaching Hospital. Tehran University of Medical 
Sciences. 2004-2005 

● An Ecological Study on the Relationship between Health Determinants and 
Health Status Indicators in Iran. Tehran University of Medical Sciences. 2005 

● A Prevalence Study on Physical Diseases among Schizophrenic Patients 
Admitted to Major Psychiatric Hospitals in Tehran, Iran. Iran University of 
Medical Sciences. 1998 

● Effects of Ramadan Fasting on Blood Biochemical Factors and Hypertension. 
Iran University of Medical Sciences. 1995 

 
Experience in Developing Grant Proposals 

• Predictive optimal anticlotting treatment for segmented patient populations 
(Peter Tonellato, PI), National Institutes of Health, 2013  

• A Compute Cluster Supporting Multi-Disciplinary Genomics and Bioinformatics 
(Peter Tonellato, Michael Carvan, Sandra McLellan, Rebecca Klaper, Co-PIs), 
National Science Foundation MRI Program, 2013 

• In Silico Pharmacogenetic Clinical Trial Design, Simulation, and Predicted 
Outcomes (Peter Tonellato, PI), National Science Foundation Smart Health 
and Wellbeing Program, 2012-2013 

• Predicting clinical validity of bladder cancer nomograms (Peter Tonellato and 
Tracy Downs, Co-PIs), UW-Madison/UW-Milwaukee Intercampus Research 
Incentive Grants Program, 2012-2013 

• Guiding Warfarin Clinical Trial Design Using Pharmacogenetic Simulations 
(Peter Tonellato, PI), University of Wisconsin-Milwaukee Research Growth 
Initiative, 2012-2014 

 
Experience in Funded Projects 

• Scientist on Predictive optimal anticlotting treatment for segmented patient 

populations (Peter Tonellato, PI), National Institutes of Health, 2013  

• Scientist on Guiding Warfarin Clinical Trial Design Using Pharmacogenetic 
Simulations (Peter Tonellato, PI), University of Wisconsin-Milwaukee Research 
Growth Initiative, 2012-2014 

• Scientist on Collaborative Intelligent Health Information Systems Initiative 
(CIHISI) (Sally Lundeen, PI), National Science Foundation, Partnerships for 
Innovation-PFI, 2007-2009. 

• Scientist on Using Evidence-based Nursing Practices and EHR Decision 
Support to Reduce Fall-related Patient Injuries in Acute Care (Norma Lang, PI), 
AHRQ ACTION, 2009 

 
Publications and Presentations 

● Ravvaz K, Michalkiewicz M, Chi CL, Tonellato P. Secondary use of electronic 
medical records to enhance in silico comparative effectiveness research: An 
application to anticoagulation health disparity. JAMIA. Preparation for re-
submission. 

● Adams MB, Kaplan B, Sobko HJ, Kuziemsky C, Ravvaz K, Koppel R. Learning 
from Colleagues about Healthcare IT Implementation and Optimization: 
Lessons from a Medical Informatics Listserv. Journal of Medical Systems. 2015 
Jan;39(1):157. 
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● Adams M, Kaplan B, Ravvaz K, Koppel R, Kuziemsky C. What We See, Say, 
and Write: Qualitative Data Coding, Grounded Theory, and Other Analytic 
Approaches for Listservs, Records, and Patient Narratives. Tutorial at 
American Medical Informatics Association Annual Conference. Nov. 2014. 
(refereed) 

● Ravvaz K, Soulimi Y, Chi CL. Pharmacogenetic Clinical Trial Simulation 
Workshop. Center for Biomedical Informatics, Harvard Medical School. Apr. 
2014. (invited) 

● Adams M, Kaplan B, Koppel R, Kuziemsky C, Ravvaz K, Sobko H. Insights 
from the Implementation Forum’s Discussions: What Thirty Percent of AMIA 
Members Say about HIT Implementation and Use. Panel at American Medical 
Informatics Association Annual Conference. Nov. 2013. (refereed) 

● Ravvaz K, Tonellato P, Michalkiewicz M. Development of an EMR-based 
database for anticoagulation/anticlotting outcome research. Oral presentation 
at American Public Health Association Annual Meeting. Nov. 2013. (refereed) 

● Ravvaz K, Michalkiewicz M, Tonellato P. Secondary Use of a Statewide 
Electronic Health Record System for Patient-Centered Outcome Research: An 
Application to Anticoagulation Agents. Poster presentation at American Medical 
Informatics Association Annual Conference. Nov. 2013. (refereed) 

● Ravvaz K, Huang CY, Tonellato P, Patrick T. In-silico analysis of the 
translation of warfarin pharmacogenetic knowledge. Proceedings of 2012 
College of Health Sciences Research Symposium, University of Wisconsin-
Milwaukee, 2012:37. (invited) 

● Miller T, Ravvaz K, Cimino JJ, Yu H. An Investigation into the Feasibility of 
Spoken Clinical Question Answering. Proceedings of the AMIA Symp 2011, 
American Medical Informatics Association; 2011:954-9. (refereed) 

● Huang CY, Kos P, Ravvaz K, Tonellato P. Meaningful Use of EHRs in 
Identifying Rural-Urban Health Disparities Using Pharmacogenetics-Based 
Clinical Avatar Simulations. WPHA–WALHDAB Annual Conference, 2011. 
(refereed) 

● Kos P, Huang CY, Ravvaz K, Tonellato P. Venous thromboembolism and 
ischemic stroke risk disparities predicted in Milwaukee County. WPHA-

WALHDAB Annual Conference, 2011. (refereed) 
● Ravvaz K, Patrick TB. Measuring Semantic Density of Nursing Practice 

Recommendations. Proceedings of the AMIA Symp 2009, American Medical 
Informatics Association, 2009:1014. (refereed)  

● Ravvaz K, Senk P, Patrick T, Coenen A, Kim TY, Zhao H, Gaudioso C, Jensen 
K, Lang N. Mapping Nursing Concepts to Ontologies for Evidence-Based 
Nursing. Proceedings of the AMIA Symp 2008, American Medical Informatics 
Association, 2008:1105. This poster was nominated for an AMIA 
Distinguished Poster Award. (refereed) 

● Ravvaz K, Patrick TB. An Ethical Review of Euthanasia Web Sites. 
Proceedings of the AMIA Symp 2007, American Medical Informatics 
Association, 2007:1088. (refereed) 

● Ravvaz K, et al. Tehran University of Medical Sciences and Health Services 
(English Prospectus). Tehran: TUMS Press, 2005. 

● Ravvaz K. Monthly International Relationships News Bulletin, Tehran 
University of Medical Sciences, 2003-2005. 

● Ravvaz K, Haghdoost AA, and Setayesh HR. Effects of Ramadan fasting on 
blood biochemical factors and hypertension. 9th Iran National Medical Student 
Scientific Congress, 1995. (refereed) 
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Databases 

● Patrick T, Ravvaz K. Metadata Registry for “Risk for Fall Assessment” in 
USHIK (United States Health Information Knowledgebase): 
http://ushik.ahrq.gov/dr.ui.drOrg_View?System=mdr&OrgID=45&enableAsynchronousLoading=t
rue 

● Ravvaz K. WiAD: Wisconsin Anticoagulation/Anticlotting Database       
          
Conference Participation and Attendances 

● AMIA 2013 Annual Symposium 
         American Medical Informatics Association, Washington DC, November 2013 

● American Public Health Association Annual Conference, Boston, November 
2013 

● Genomics and Personalized Medicine Conference: Analysis and Clinical 
Implementation, Milwaukee, December 2012 

● AMIA 2012 Annual Symposium 
         American Medical Informatics Association, Chicago, November 2012 

● Drug Development Collaborative Workshop, Milwaukee, May 2012 
● College of Health Sciences Research Symposium 

University of Wisconsin-Milwaukee, May 2012 
● Cancer Center Collaborative Workshop, Clinical and Translational Science 

Institute, Milwaukee, December 2011 
● AMIA 2011 Annual Symposium 

American Medical Informatics Association, Washington DC, November 2011 
● AMIA 2009 Annual Symposium 

American Medical Informatics Association, San Francisco, November 2009 
● AMIA 2008 Annual Symposium 

American Medical Informatics Association, Washington DC, November 2008 
● AMIA 2007 Annual Symposium 

American Medical Informatics Association, Chicago, November 2007 
● AMIA 2006 Annual Symposium 

American Medical Informatics Association, Washington DC, November 2006 
● Emergency Medicine Leadership Workshop 

Tehran University of Medical Sciences in collaboration with the George 
Washington University, Penn State University, Oregon Health and Science 
University, Johns Hopkins University and Loma Linda University, 2003 

 
Honors and Awards 

● Health Equity Leadership Institute Scholar, University of Wisconsin-Madison, 
2014 

● Biomedical and Health Informatics Research Institute (BHIRI) Award, 
University of Wisconsin-Milwaukee, 2013 

● Health Equity Leadership Institute Scholar, University of Wisconsin-Madison, 
2011 

● University of Wisconsin-Milwaukee Travel Award, 2009, 2011 
● University of Wisconsin-Milwaukee Chancellor’s Award, 2006, 2007 

 
Clinical Certification 

● Medical Doctorate, Medical Council of Iran, 1998-present 
● Registered Physician, Tehran, Iran, 1988-present 

  
Societies 

● Member, American Public Health Association (APHA) 
● Member, American Medical Informatics Association (AMIA) 
● Member, Global Health Informatics Working Group, American Medical 

Informatics Association (AMIA) 
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● Member, Wisconsin Public Health Association 
● Member, Medical Council of Iran 
● Co-Founder and President, Biomedical and Health Informatics Students 

Organization Association, University of Wisconsin-Milwaukee 
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